SURFACES IN CONSTANT CURVATURE MANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR FIELD

BY DAVID A. HOFFMAN

Communicated by James Serrin, July 8, 1971

1. Statement of results. For an (n)-dimensional Riemannian manifold M^n, isometrically immersed in an $(n + k)$-dimensional Riemannian manifold $M^{(n+k)}$ of constant sectional curvature c, let H denote the mean curvature vector field of M^n. H is a section of the normal bundle NM^n of the immersion. When $n = 2$, $k = 1$, and $c = 0$ (a surface immersed in E^3), the requirement $|H| = \text{constant}$ is classical constant mean curvature. If $k > 1$, however, the condition $|H| = \text{constant}$ is usually too weak to prove reasonable generalizations of the classical theorems for surfaces of constant mean curvature in E^3. We investigate a stronger requirement on H; namely, that H be parallel with respect to the induced connection in the normal bundle (for definitions, see II). Then using an analytic construction first employed by H. Hopf [2], we obtain

Theorem 1. A compact surface M^2 of genus 0 immersed in $M^4(c), c \geq 0$, upon which H is parallel in the normal bundle, is a sphere of radius $1/|H|$.

This generalizes a theorem of Hopf, who proved that the only immersed surfaces in E^3 of genus 0 with constant mean curvature are spheres [2, Chapter 7, §4]. For complete surfaces in E^4, we prove

Theorem 2. A complete surface M^2, immersed in E^4, whose Gauss curvature does not change sign, and for which H is parallel in the normal bundle NM^2, is a minimal surface ($H \equiv 0$), a sphere, a right circular cylinder, or a product of circles $S^1(r) \times S^1(\rho)$, where $|H| = \frac{1}{2}(1/r^2 + 1/\rho^2)^{1/2}$.

This extends a theorem of Klotz and Osserman for complete surfaces of constant scalar mean curvature in E^3 [5]. It can also be generalized to immersions into $M^4(c), c \geq 0$. Theorem 2 is proved in two steps. First we prove

Theorem 3. A piece of immersed surface M^2 in E^4, satisfying the conditions of Theorem 2 with $H \neq 0$, is either a sphere or it is flat ($K = 0$).

Then we establish the following characterization of flat surfaces in E^4 with parallel mean curvature vector fields:

Key words and phrases. Constant curvature manifolds, parallel mean curvature vector, constant mean curvature, complete surfaces, Codazzi equations, conformal coordinates, pseudo-umbilical, parallel normal bundle.

Copyright © American Mathematical Society 1972

247
Theorem 4. A piece of immersed surface M^2 in E^4 with parallel mean curvature vector $H \neq 0$ and $K \equiv 0$ is a piece of $S^1(r) \times S^1(p)$: the product of two circles of radius r and p with the standard flat immersion. (p may be infinite, in which case we have a right circular cylinder.)

Theorem 2 generalizes to immersions in $S^4(c)$.

Surfaces in E^n which lie minimally in hyperspheres of radius r have the same mean curvature vectors as the hypersphere, and consequently have parallel mean curvature vector fields. Such surfaces are pseudo-umbilic ($\varphi_3 \equiv 0$ in the lemma in II). In this case, Itôh [3] has proven a special case of Theorem 2 for immersions in E^4 (see also Chen, [1]). For minimal surfaces in S^4, Ruh [8] has proven a case of Theorem 1, using methods similar to the basic lemma in II. For a wide variety of examples of complete minimal surfaces in S^3, see Lawson [6].

It is possible to show the existence of surfaces in E^n and $S^n(c)$ with parallel H and $(p \neq 0)$ (i.e. they do not lie minimally in hyperspheres). The method employed uses a theorem due to Szczarba [9] on existence of immersions in constant curvature manifolds with codimension $k > 1$.

II. Definitions and Main Lemma. ∇ denotes covariant differentiation on M^{n+k}, and ∇ denotes covariant differentiation on $M^n \subset M^{n+k}$. For X, Y, sections of TM^n, $\nabla_X Y = [\nabla_X Y]^T$ where $[\]^T$ is projection onto TM^n. $[\]^N$ is projection onto NM^n.

D defines a connection on NM^n. $A(X, N) = [\nabla_X N]^T$. A is a tensor: $A_p: TM^n \times NM^n \rightarrow TM^n$ is bilinear.

For an orthonormal framing (e_1, \ldots, e_n) of TM^n, $H = (1/n)\sum_{i=1}^n B(e_i, e_i)$. This definition of H is independent of the framing. A normal vector field N is said to be parallel in the normal bundle NM^n if $D_X N = 0$ for all X in TM^n. This condition implies $|N| = \text{const.}$ Thus our assumption that H is parallel in NM^n includes constant mean curvature. ($|H| = c$.)

The Gauss and Codazzi equations, for X, Y, Z sections in TM^n, are

1. $R(X, Y)Z = c\{\langle X, Z \rangle Y - \langle Y, Z \rangle X \} + A(X, B(Y, Z)) - A(Y, B(X, Z))$,
2. $(\nabla_X B)(Y, Z) = (\nabla_Y B)(X, Z),$

where $(\nabla_X B)(Y, Z) = D_X (B(Y, Z)) - B(\nabla_X Y, Z) - B(Y, \nabla_X Z)$ (for a reference for the above definitions and equations, see [4, Chapter 7]).

For X, Y in TM^n, N in NM^n, $\bar{R}(X, Y)N = D_X D_Y N - D_Y D_X N - D_{\langle XY \rangle} N$ is the curvature tensor for D. For \bar{R}, there is a Gauss-type equation

3. $\bar{R}(X, Y)N = B(X, A(N, Y)) - B(Y, A(N, X))$

and an equation, analogous to (2),

For a unit normal vector \(e_a \) at \(p \in M^n \), the matrix \(\left(\lambda_{ij}^3 \right) = (B(e_i, e_j) \cdot e_a) \) is the "second fundamental form matrix in the \(x \) direction." We specify \(H/|H| \) as \(e_{n+1} \) when \(H \neq 0 \). Considering an immersed surface \((n = 2) \) given in conformal coordinates \((u, v)\): \(ds^2 = E(du^2 + dv^2) \), we associate to it a natural framing

\[
(e_1, e_2) = \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \sqrt{E} \right)
\]

of the tangent bundle, \(TM^2 \).

Lemma. For an immersed surface, \(M^2 \subset \mathbb{R}^{n+k} \) in conformal coordinates, let \(H \neq 0 \) and \(e_a \) be a unit normal vector field with \(e_a \cdot H = 0 \):

(a) if \(H \) is parallel in \(NM^2 \), then \(\varphi_3 = E\{ \frac{1}{2}(\lambda_1^3 - \lambda_2^3) - i\lambda_1^3 \} \) is an analytic function of \(z = u + iv \);

(b) if \(e_a \) is parallel in \(NM^2 \), then \(\varphi_a = E\{ \lambda_1^3 - i\lambda_1^3 \} \) is an analytic function of \(z \);

(c) if \(k = 2 \) and \(H \) is parallel, then \(e_a \) is parallel, and both \(\varphi_3 \) and \(\varphi_a \) are analytic;

(d) under the conditions of (a) and (b), either \(\varphi_3 \equiv 0 \) or \(\varphi_a = \kappa \varphi_3 \) where \(\kappa \) is a real constant.

Sketch of Proof. (a) Using equation (4) with \(X = \partial/\partial u \), \(Y = \partial/\partial v \), \(N = H \), and the assumption that \(H \) is parallel, the equations

\[
(E\lambda_1^3)_u - (E\lambda_2^3)_v = \frac{1}{2}E_u(\lambda_1^3 + \lambda_2^3), \quad (E\lambda_1^3)_v - (E\lambda_2^3)_u = \frac{1}{2}E_v(\lambda_1^3 + \lambda_2^3)
\]

are obtained. (5) is in the same form as the Codazzi equations in conformal coordinates for surfaces in \(E^3 \), only it is expressed for the distinguished normal \(e_3 = H/|H| \). Since \(\lambda_1^3 + \lambda_2^3 = 2|H| \) is constant, (5) reduces to the Cauchy-Riemann equations for \(\varphi_3 \).

(b) Proof follows that of (a), using the fact that \(\lambda_1^3 + \lambda_2^3 = 0 \).

(c) Since \(NM^2 \) is 2-dimensional, the assumption that \(H \) is parallel forces \(e_a \) to be parallel. Then (a) and (b) imply analyticity.

(d) Using equation (3) with

\[
X = \frac{\partial}{\partial u_1} \sqrt{E}, \quad Y = \frac{\partial}{\partial u_2} \sqrt{E}, \quad N = e_3,
\]

we obtain, using the fact that \(e_3 \) is parallel,

\[
0 = \left\{ \sum_{k=1}^2 \lambda_k^3 \lambda_k^3 - \lambda_k^3 \lambda_k^3 \right\}
\]

Note that (6) implies \(\text{Im}(\varphi_3) = 0 \). So if \(\varphi_3 \neq 0 \), \(\varphi_a/\varphi_3 = \varphi_a \cdot \varphi_3/|\varphi_3|^2 \) is real. By (a) and (b), it is also meromorphic, hence constant.

III. Proof of Theorems (Sketch). Theorem 1 is proved by constructing an analytic differential \(\theta_3 \) out of the functions \(\varphi_3(z) \) of the lemma: in local coordinates, \(\theta_3 = \varphi_3 dz^2 \). Since \(M^2 \) is of genus 0, \(\theta_3 \) must be identically zero.
Hence \(\varphi_3(z) \equiv 0 \). This implies that \(M^2 \) is pseudo-umbilic (\(\lambda^3_{11} = \lambda^3_{22}, \lambda^3_{12} = 0 \)). The function \(\varphi_4 \) associated with \(e_4, e_4 \cdot H = 0 \) is also zero by a similar argument. Hence \(M^2 \) is totally umbilic. This implies that \(M^2 \) is immersed as a sphere.

To prove Theorem 3, we can consider on \(M^2 \) the quadratic analytic differentials \(\varphi_3dz^2 \) and \(\varphi_4dz^2 \) (where \(\varphi_3, \varphi_4, \) and \(z \) are as in the lemma). If \(K \geq 0 \), \(M^2 \) is either compact or parabolic by a theorem of Huber (see [5, p. 316]). If it is compact, then either \(K \equiv 0 \) or \(M^2 \) is of genus 0. The genus 0 case is a sphere by Theorem 1.

If \(K \leq 0 \), then \(|H|^2 - K > |H|^2 > 0 \). In a neighborhood of each point, we introduce the new metric \(ds^2 = E(|H|^2 - K)^{1/2}(du^2 + dv^2) \). Using the equality

\[
|\varphi_3|^2 + |\varphi_4|^2 = E^2(|H|^2 - K)
\]

and part (d) of the lemma to show that \(\Delta \log(|\varphi_3|^2 + |\varphi_4|^2) = 0 \), we establish that \(ds^2 \) is a flat metric. Therefore, the universal covering surface \(\tilde{M}^2 \) of \(M^2 \) is conformally the plane. The function \(|H|^2 - K \) is easily seen to be superharmonic. Since it is bounded below, it must be constant. Hence \(K \) is constant, and must be zero.

Theorem 4 is proved by introducing conformal coordinates \((u, v)\) such that \(E \equiv 1 \). The lemma is used to show that all \(\lambda^3_{ij} \) are constant. Then a rotation of coordinates puts the immersion into the form

\[
(u, v) \rightarrow \left(r \cos \frac{u}{r}, r \sin \frac{u}{r}, \rho \cos \frac{v}{\rho}, \rho \sin \frac{v}{\rho} \right).
\]

The constants \(r \) and \(\rho \) are determined from the \(\lambda^3_{ij} \) and \(|H| \). This immersion is the standard flat immersion of the plane into \(E^4 \) as a product of circles.

BIBLIOGRAPHY

1. a) B.-Y. Chen, **Minimal surfaces in \(S^m \) with Gauss curvature \(\leq 0 \)**, Proc. Amer. Math. Soc. (to appear).

2. H. Hopf, **Lectures on differential geometry in the large**, Stanford University, Stanford, Calif., 1956 (mimeographed notes).

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305

Current address: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DURHAM, DURHAM, ENGLAND