A RADIAL AVERAGING TRANSFORMATION, CAPACITY AND CONFORMAL RADIUS

BY MOSHE MARCUS

Communicated by F. W. Gehring, October 18, 1971

Introduction. Let \(\mathcal{D} = \{D_1, \ldots, D_n\} \) be a family of domains in the plane, containing the origin. We define a radial averaging transformation \(\mathcal{R}_A \) on \(\mathcal{D} \) by which we obtain a starlike domain \(D^* \). When \(\mathcal{D} \) is such that the domains \(D_1, \ldots, D_n \) are obtained from a fixed domain \(D \) by rotation or reflexion, \(\mathcal{R}_A \) becomes a radial symmetrization. One of the results we present is an inequality relating the conformal radius of \(D^* \) to the conformal radii of \(D_1, \ldots, D_n \) at the origin. This result includes, as particular cases, the radial symmetrization results of Szegö [6] (for starlike domains), Marcus [4] (for general domains) and Aharonov and Kirwan [1]. The inequality for the conformal radii is obtained via an inequality for conformal capacities. A number of applications in the theory of functions is described.

1. Let \(M \) be the half strip \(\{(x, y)|0 < x < 1, 0 < y\} \). We shall say that a function \(f \) is of class \(B(M) \) if
 (i) \(f \) is continuous in \(\overline{M} \) (= closure of \(M \));
 (ii) \(0 < f \leq 1 \) in \(M \);
 (iii) the set \(\Omega_1 = \{(x, y)|f(x, y) < 1\} \cap M \) is bounded;
 (iv) on any half line \(\{x = x_0\} \cap \overline{M}, f \) assumes every value \(\lambda, 0 < \lambda < 1 \), at least once, but not more than a finite number of times;
 (v) \(f \in C^1(\Omega(f)) \), where \(\Omega(f) = \{(x, y)|0 < f(x, y) < 1\} \cap M \);
 (vi) for any line \(x = x_0, 0 \leq x_0 \leq 1 \), the set of points on \(\{x = x_0\} \cap \Omega(f) \) where \(\partial f/\partial y = 0 \) is finite.

If \(f \in B(M) \) we denote

\[\Omega_0(f) = \{(x, y)|f(x, y) = 0\} \cap M. \]

\[l(x_0, \lambda; f) = \text{meas}\{x = x_0\} \cap \Omega_\lambda(f) \] (0 \leq \lambda \leq 1),

where the measure is the linear Lebesgue measure. We note that \(l(x_0, \lambda; f) \) is a strictly monotonic increasing function of \(\lambda, 0 \leq \lambda \leq 1 \).

We now introduce

Definition 1.1. Let \(\mathcal{F} = \{f_1, \ldots, f_n\} \subset B(M) \) and let \(A = \{a_1, \ldots, a_n\} \) be a set of positive numbers such that \(\sum_{j=1}^n a_j = 1 \). Denote

\[AMS 1970 \text{ subject classifications. Primary 30A44, 30A36; Secondary 31A15, 30A32.} \]

\[Key \text{ words and phrases. Conformal capacity, Dirichlet integral, conformal radius, radial symmetry, complex analytic functions in the unit disk.} \]
(1.3) \[l^*(x, \lambda) = \sum_{j=1}^{n} a_j l(x, \lambda; f_j); \]

\[\Omega^*_\alpha = \Omega^*_{\alpha}(\mathcal{F}, A) = \{(x, y) | 0 < y < l^*(x, \lambda) \} \cap M \quad (0 < \lambda \leq 1), \]

(1.4) \[\Omega^*_\alpha = \Omega^*_{\alpha}(\mathcal{F}, A) = \{(x, y) | 0 \leq y \leq l^*(x, 0) \} \cap M, \]

\[\Omega^* = \Omega^*(\mathcal{F}, A) = \Omega^*_{\alpha} - \Omega^*_{\alpha}. \]

Then the linear averaging transformation \(\mathcal{L}_A \) on \(\mathcal{F} \) is defined as follows:

\[f^*(x, y) = \mathcal{L}_A(\mathcal{F}) = 0, \text{ if } (x, y) \in \Omega^*_a, \]

(1.5) \[f^*(x, y) = \lambda, \text{ if } y = l^*(x, \lambda), 0 < \lambda < 1, \]

\[= 1, \text{ if } (x, y) \in M - \Omega^*_a. \]

The following two results are the main steps in the derivation of the main theorems.

Lemma 1.1. Let \(\mathcal{F} \) and \(A \) be as in Definition 1.1. Then \(f^* \) is uniformly Lipschitz in \(M \).

Theorem 1.1. Let \(\mathcal{F} \) and \(A \) be as in Definition 1.1. Let \(G(t) \) be a function defined for \(t \geq 0 \) such that \(G(t) \) is continuous, convex and nondecreasing. Then, with the notations introduced above, we have

(1.6) \[\int \int_{\Omega^*_a} G(1 + |\nabla f^*|^2)^{1/2} \, dx \, dy \leq \sum_{j=1}^{n} a_j \int \int_{\Omega(f_j)} G((1 + |\nabla f_j|^2)^{1/2}) \, dx \, dy, \]

where \(\Omega(f_j) = \Omega_{1}(f_j) - \Omega_0(f_j) \).

Corollary.

(1.7) \[\int \int_{\Omega^*_a} |\nabla f^*|^p \, dx \, dy \leq \sum_{j=1}^{n} a_j \int \int_{\Omega(f_j)} |\nabla f_j|^p \, dx \, dy \quad (1 \leq p). \]

Note that the left side of (1.6) is meaningful because of Lemma 1.1.

2. A condenser in the plane is a system \(C = (\Omega, E_0, E_1) \) where \(\Omega \) is a domain and \(E_0, E_1 \) are disjoint closed sets whose union is the complement of \(\Omega \). We shall assume also that \(E_0 \) is compact and \(E_1 \) unbounded. An alternative notation for \(C \) will be \(C = (D, E_0) \) where \(D = \Omega \cup E_0 \).

If \(\Omega \) satisfies the segment property (i.e., for any point \(P \) on the boundary of \(\Omega \) there exists a segment \(PP' \) lying outside \(\Omega \)), there exists a unique function \(\omega \), called the potential function of \(C \), such that \(\omega \) is harmonic in \(\Omega \) and continuous in the extended plane and such that \(\omega \equiv 0 \) on \(E_0 \) and \(\omega \equiv 1 \) on \(E_1 \). In this case the conformal capacity of \(C \) may be defined by
We now introduce

DEFINITION 2.1. Let \(\mathcal{D} = \{D_1, \ldots, D_n\} \) be a family of open sets in the complex plane \(z \). Suppose that the closed disk \(|z - z_0| \leq \rho \) (for some \(\rho > 0 \)) is contained in \(\bigcap_{j=1}^{n} D_j \). Let

\[
K_j^p(\phi) = \{r|z = z_0 + re^{i\phi} \in D_j, \rho < r < \infty\} \quad (0 \leq \phi < 2\pi);
\]

\[
l_j^p(\phi) = \int_{K_j^p(\phi)} \frac{dr}{r} \quad \text{and} \quad R_j^p(\phi) = R(\phi; D_j; z_0) = \rho \exp l_j^p(\phi).
\]

(Note that \(R_j^p(\phi) \) does not depend on \(\rho \).)

Let \(\mathbf{A} = \{a_1, \ldots, a_n\} \) be a set of positive numbers such that \(\sum_{j=1}^{n} a_j = 1 \). Set

\[
R^p(\phi) = \prod_{j=1}^{n} R_j^p(\phi)^{a_j};
\]

\[
D^* = \mathcal{R}_A(\mathcal{D}; z_0) = \{z = z_0 + re^{i\phi} | 0 \leq r < R^p(\phi), 0 \leq \phi < 2\pi\}.
\]

We shall say that \(\mathcal{R}_A \) is a radial averaging transformation on \(\mathcal{D} \) with center \(z_0 \).

If \(\{C_j\}_{j=1}^{n} \) is a family of condensers, \(C_j = (\Omega_j, E_{0,j}, E_{1,j}) = (D_j, E_{0,j}) \) where \(\bigcap_{j=1}^{n} E_{0,j} \ni \{z - z_0| \geq \rho\} \) we define

\[
C^* = \mathcal{R}_A(C_j; z_0) = (D^*, E_0^*)
\]

where \(D^* = \mathcal{R}_A(D_j; z_0) \) and \(E_0^* = \mathcal{R}_A(E_{0,j}; z_0) \). \(E_0^* \) is defined in the same way as \(D^* \) except that in (2.5) we have \(0 \leq r \leq R^p(\phi) \).

We can now formulate the main result.

THEOREM 2.1. Let \(\{C_1, \ldots, C_n\} \) be a family of condensers as above, and let \(C^* \) be defined as in (2.6). Suppose that the domains \(\Omega_1, \ldots, \Omega_n \) have the segment property. Then

\[
I(C^*) \leq \sum_{1}^{n} a_j I(C_j).
\]

The proof is based on Theorem 1.1. We may assume that \(z_0 = 0 \) and \(\rho = 1 \). We map the domain \(|z| < 1 \), cut along the positive real axis, by \(w = \ln z \) onto the half strip \(0 < u < \infty, 0 < v < 2\pi (w = u + iv) \). Let \(\omega_j \) be the potential function of \(C_j \). Denote by \(f_j(u, v) \) the function \(\omega_j \) represented in \((u, v) \) coordinates. Then we apply Theorem 1.1 (or, more precisely, inequality (1.7) with \(p = 2 \)) to \(\mathcal{F} = \{f_1, \ldots, f_n\} \) in the strip mentioned above.
If \(D \) is a domain in the plane and \(z_0 \in D \), denote by \(r(z_0, D) \) the conformal (or inner) radius of \(D \) at \(z_0 \). (For definition and properties see for instance Hayman [3, pp. 78–83].) Using a theorem of Pólya and Szegő [5] on the relation between conformal radius and conformal capacity and Theorem 2.1 we obtain

Theorem 2.2. Let \(\mathcal{D} = \{D_1, \ldots, D_n\} \) be a family of domains such that \(z_0 \in \bigcap_1^n D_j \). Let \(D^* = R_A(\mathcal{D}; z_0) \) (Definition 2.1). Then

\[
\prod_{j=1}^n r(z_0, D_j)^{\alpha_j} \leq r(z_0, D^*).
\]

As a first application of Theorem 2.2 we obtain the following symmetrization result:

Theorem 2.3. Let \(f(z) = a_1 z + a_2 z^2 + \cdots \) be an analytic function in the unit disk \(|z| < 1 \). Let \(D \) be the image of \(|z| < 1 \) by \(w = f(z) \). Let \(A = \{a_j\}_{j=1}^n \) be a set of positive numbers such that \(\sum_1^n a_j = 1 \), let \(\{x_j\}_{j=1}^n \) be a set of integers \((x_j \neq 0) \) and let \(\{\beta_j\}_{j=1}^n \) be an arbitrary set of real numbers.

If \(R(\phi) = R(\phi; D; 0) \) (see (2.3)) set

\[
R^*(\phi) = \prod_{j=1}^n R(x_j \phi + \beta_j)^{b_j}, \quad \text{where } b_j = a_j/|x_j|; \\
D^* = \{w = \sigma e^{i\phi} | 0 \leq \sigma < R^*(\phi), 0 \leq \phi < 2\pi\}.
\]

Then

\[
|a_1| \leq r(0, D) \leq r(0, D^*)^{1/b}, \quad \text{where } b = \sum_1^n b_j.
\]

Theorem 2.3 includes as particular cases the radial symmetrization results of Szegő [6], Marcus [4] and Aharonov and Kirwan [1].

We bring now two applications of the preceding theorems.

Theorem 2.4. Let \(f(z) \) and \(D \) be as in Theorem 2.3. Denote

\[
D_t = \{w = \sigma e^{it\phi} | 0 \leq \sigma < R(\phi)^t, 0 \leq \phi < 2\pi\}, (0 < t < 1),
\]

where \(R(\phi) = R(\phi; D; 0) \). Then

\[
|a_1| \leq r(0, D) \leq r(0, D_t)^{1/t}.
\]

Theorem 2.5. Let \(f(z) = z + a_2 z^2 + \cdots \) and \(D \) be as in Theorem 2.3. Let \(R^*(\phi) \) be defined as in (2.9). Suppose that \(R^*(\phi) \leq M \leq \infty \), \(0 \leq \phi < 2\pi \). Suppose also that for some set of \(m \) rays issuing from the origin, with arguments \(\phi_1, \ldots, \phi_m \) we have

\[
\sup_{1 \leq j \leq m} R^*(\phi_j) = K.
\]
Let D_0 be the disk $|w| < M$ (the entire plane if $M = \infty$) cut along the rays $w = \sigma e^{j\phi}, K_0 \leq \sigma < M, j = 1, \ldots, m$, where K_0 is so chosen that $r(0, D_0) = 1$. (It follows from our assumptions that $M \geq 1$.) Then $K_0 \leq K$.

Theorem 2.5 implies a number of special “covering” theorems such as Theorem 5 and 6 of Marcus [4] and Theorem 4.2 of Aharonov and Kirwan [1].

A complete presentation of the results described in this note and additional applications will appear elsewhere. We mention also that a discussion of radial averaging transformations with metrics of the form $g(r) \, dr \, d\phi$ is given in [2].

REFERENCES