Generalized product theorems for torsion invariants with applications to flat bundles

Author:
Douglas R. Anderson

Journal:
Bull. Amer. Math. Soc. **78** (1972), 465-469

MSC (1970):
Primary 57C10; Secondary 18F25

DOI:
https://doi.org/10.1090/S0002-9904-1972-12947-1

MathSciNet review:
0293636

Full-text PDF

References | Similar Articles | Additional Information

**1.**D. R. Anderson,*The Whitehead torsion of the total space of a fiber bundle*, Topology (to appear). MR**295348****2.**D. R. Anderson,*Wall's finiteness obstruction for the total space of a flat bundle*(submitted).**3.**H. Bass,*Algebraic K-theory*, Benjamin, New York, 1968. MR 40 #2736. MR**249491****4.**F. T. Farrell and W. C. Hsiang,*A formula for K*, Applications of Categorical Algebra, Proc. Sympos. Pure Math., vol. 17, Amer. Math. Soc. Providence, R.I., 1970, pp. 192-218. MR 41 #5457. MR**260836****5.**S. M. Gersten,*A product formula for Wall's obstruction*, Amer. J. Math. 88 (1966), 337-346. MR 33 #6623. MR**198465****6.**K. W. Kwun and R. H. Szczarba,*Product and sum theorems for Whitehead torsion*, Ann. of Math. (2) 82 (1965), 183-190. MR 32 #454. MR**182972****7.**L. C. Siebenmann,*The obstruction to finding a boundary for an open manifold of dimension greater than five*, Thesis, Princeton University, Princeton, N.J., 1965.

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
57C10,
18F25

Retrieve articles in all journals with MSC (1970): 57C10, 18F25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1972-12947-1