Let k be a field, K/k a finite Galois extension, G a finite group isomorphic to $\mathcal{G} = \text{Gal}(K/k)$, $\gamma: \mathcal{G} \to G$ an isomorphism and $\Sigma: 1 \to N \to E \to G \to 1$ an exact sequence of finite groups. The embedding problem

$$P = P(K/k, \Sigma, \gamma)$$

is to construct an extension L/K such that L/k is Galois, and such that there exists an isomorphism $\beta: \mathcal{E} \to E$, where $\mathcal{E} = \text{Gal}(L/k)$, such that $\gamma \cdot \text{Res}_{L/K} = \varepsilon \beta$. L is called a solution field, β a solution isomorphism, and the pair (L, β) a solution, to P. At times we only require β to be monomorphic; in such a context (L, β) is called an improper solution, and if β is epimorphic, (L, β) is a proper solution.

1. Reduction to solvable groups and split extensions. Let $1 \to N \to E \xrightarrow{\varepsilon} G \to 1$ be an exact sequence of groups, and let U be a subgroup of E such that $U \cdot i(N) = E$. Let E^* be the semidirect product (U, N), where the action of U on N is given by $n^u = i^{-1}(u^{-1}i(n)u)$, for $n \in N$, $u \in U$. Let the mapping $\eta: E^* \to E$ be defined by $\eta((u, n)) = u\iota(n)$. One verifies easily that η is an epimorphism with kernel $U \cap iN$, and the diagram

$$1 \to N \to E^* \xrightarrow{\varepsilon} G \to 1$$

commutes and has exact rows, where $\varepsilon^*((u, n)) = u$ for $(u, n) \in E^*$, $\iota^*(n) = (1, n)$.

Let an embedding problem $P = P(K/k, \Sigma, \gamma)$ be given and let U be as above. We define the embedding problem $P_1 = P(K/k, \Sigma_1, \gamma)$ where Σ_1 is the sequence $1 \to i^{-1}(U \cap iN) \to U \to G \to 1$. Suppose P_1 has a solution (L_1, β_1). We then define the embedding problem

$$P_2 = P(L_1/k, \Sigma_2, \beta_1)$$

where Σ_2 is $1 \to N \to E^* \to G \to 1$. Suppose P_2 has a solution (L_2, β_2).
Let L be the fixed field of the kernel of $\eta \beta_2 : E_2 \to E$, let $E = \text{Gal}(L/k)$, $\bar{N} = \text{Gal}(L/K)$, and let β be defined by means of the commutative diagram

$$
\begin{array}{ccc}
E_2 & \xrightarrow{\beta_2} & E^* \\
\downarrow \text{Res} & & \downarrow \eta \\
\bar{E} & \xrightarrow{\beta} & E
\end{array}
$$

One verifies that (L, β) is a solution to P, hence

Theorem 1. If the embedding problems P_1, P_2 have successive solutions, then so does P.

A group-theoretic lemma. Let E be a finite group, N a normal subgroup. Then there exists a subgroup U of E such that $UN = E$ and $U \cap N$ is nilpotent, and such that if E/N is nilpotent, then U is nilpotent.

Indeed, one shows that a minimal subgroup U such that $UN = E$ does the trick. Theorem 1 and the above lemma yield

Theorem 2. Any embedding problem $P = P(K/k, \Sigma, \gamma)$ can be reduced to the succession of two embedding problems

$$
P_1 = P(K_1/k_1, \Sigma_1, \gamma_1), \quad P_2 = P(K_2/k_2, \Sigma_2, \gamma_2)
$$

(where Σ_i is the exact sequence $1 \to N_i \to E_i \to \epsilon_i G_i \to 1$), in which

- in P_1: N_1 is nilpotent;
- if G_1 is solvable, then E_1 is solvable;
- if G_1 is nilpotent, then E_1 is nilpotent;

- in P_2: Σ_2 splits.

2. **On Ikeda’s theorem.** Theorem 1 furnishes a proof of the following theorem of Ikeda ([1], [2]): let k be a number field, $P = P(K/k, \Sigma, \gamma)$ an embedding problem with Σ abelian. If P has an improper solution, then P has a proper solution.

Let (L_1, β_1) be an improper solution to P. Setting $U = \beta_1(E)$, where $E = \text{Gal}(L/k)$, we have $U \cap N = E$. Moreover (L_1, β_1) is a proper solution to $P_1 = P(K/k, \Sigma_1, \gamma)$, with P_1 defined as in Theorem 1. In P_2 (defined as in Theorem 1), Σ_2 splits and N is abelian. But Scholz [3] proved in 1929 that every embedding problem $P(K/k, \Sigma, \gamma)$ with k a number field, Σ abelian, and Σ split, has a (proper) solution. Ikeda’s theorem now follows from Theorem 1.

3. **Irreducible embedding problems.** Let an embedding problem $P = P(K/k, \Sigma, \gamma)$ be given. Suppose H is a normal subgroup of E, $H \cap N = 1$. Consider the exact and commutative diagram

$$
\begin{array}{ccc}
E_2 & \xrightarrow{\beta_2} & E^* \\
\downarrow \text{Res} & & \downarrow \eta \\
\bar{E} & \xrightarrow{\beta} & E
\end{array}
$$
where \(\theta, \theta' \) are canonical, and \(i', \varepsilon' \) are defined so that the diagram commutes. There results a "reduced" embedding problem \(P' = P(K'/k, \Sigma', \gamma') \) where \(K' \) is the fixed field of \(\gamma^{-1} \varepsilon(H), \Sigma' \) the bottom row of the above diagram, and \(\gamma' : \bar{G}/\gamma^{-1} \varepsilon H \to G/\varepsilon H \) is induced by \(\gamma \).

Theorem 3. \(P \) has a solution if and only if \(P' \) has a solution \((L', \beta')\) such that \(L' \cap K = K' \).

Suppose now that the center \(Z(N) \) of \(N \) is trivial. Set \(H = \mathbb{Z}_E(iN) \), the centralizer of \(iN \) in \(E \). Then \(H \cap iN = 1 \) and \(E' = E/H \) is isomorphic to a subgroup of the automorphism group \(\text{Aut} N \) of \(N \), where the isomorphism \(\eta : E' \to \text{Aut} N \) is defined by the equation \(\eta(e')(n) = i^{-1}(\varepsilon^{-1}i'(n)e') \), \(e' \in E', n \in N \). Applying Theorem 3, we have

Theorem 4. If \(Z(N) = 1 \), then any embedding problem \(P = P(K/k, \Sigma, \gamma) \) reduces to an embedding problem \(P' = P(K'/k, \Sigma', \gamma') \), where \(k \subseteq K' \subseteq K \), where \(\Sigma' \) denotes an exact sequence \(1 \to N \to E' \to G' \to 1 \) in which \(E' \subseteq \text{Aut} N \), and where the solution field is required to satisfy the condition \(L' \cap K = K' \).

\(P' \) is called an irreducible embedding problem.

Remark. Schreier's conjecture states that the outer automorphism group of a finite simple group is solvable. If \(P = P(K/k, \Sigma, \gamma) \) is an embedding problem with \(N \) simple (nonabelian), Theorem 3 reduces \(P \) to the case \(G \) solvable, provided Schreier's conjecture is correct. But then Theorem 2 reduces \(P \) to the pair \(P_1, P_2 \) in which \(E_1 \) is solvable and \(\Sigma_2 \) splits. Of course it is required that \(L_1, L_2 \) satisfy the appropriate disjointness condition of Theorem 4.

4. **Localizability of an embedding problem.** Let \(k \) be a number field, \(K/k \) a finite Galois extension. Let \(\mathfrak{g} \) be a prime of \(k \), and assume \(k \) is contained in the completion \(k_\mathfrak{g} \) of \(k \) at \(\mathfrak{g} \), and that \(k_\mathfrak{g} \) is contained in an algebraic closure \(\bar{k}_\mathfrak{g} \) of \(k_\mathfrak{g} \). Let \(\sigma_\mathfrak{K} \) be an embedding of \(K \) into \(\bar{k}_\mathfrak{g} \) extending the inclusion map of \(k \) into \(\bar{k}_\mathfrak{g} \), and inducing a prime \(\mathfrak{p} \) of \(K \). \(\sigma_\mathfrak{K} \) induces an isomorphism \(\sigma_\mathfrak{K}^* : G(K_\mathfrak{p}/k_\mathfrak{g}) \to G(\mathfrak{p}) \), where \(K_\mathfrak{p} = k_\mathfrak{g} \cdot \sigma_\mathfrak{K}(K), \bar{G} = \text{Gal}(K/k) \), and \(G(\mathfrak{p}) \) is the decomposition group of \(\mathfrak{p} \) in \(\bar{G} \). \(\sigma_\mathfrak{K}^* \) is given by \(\sigma_\mathfrak{K}^*(\theta)(x) = \sigma_\mathfrak{K}^{-1} \theta \sigma_\mathfrak{K}(x), \theta \in G(K_\mathfrak{p}/k_\mathfrak{g}), x \in K \).

Let an embedding problem \(P = P(K/k, \Sigma, \gamma) \) be given. There is induced a local embedding problem \(P_\mathfrak{p} = P(K_\mathfrak{p}/k_\mathfrak{g}, \Sigma_\mathfrak{p}, \gamma_\mathfrak{p}) \), where \(\Sigma_\mathfrak{p} \) is the exact sequence \(1 \to N \to E_\mathfrak{p} \to \varepsilon_\mathfrak{p}, G_\mathfrak{p} \to 1 \), in which \(G_\mathfrak{p} = \gamma(\bar{G}(\mathfrak{p})), E_\mathfrak{p} = \varepsilon_\mathfrak{p}^{-1}(G_\mathfrak{p}), \varepsilon_\mathfrak{p} = \varepsilon|_{E_\mathfrak{p}}, \gamma_\mathfrak{p} = \gamma_\mathfrak{K} \).
Suppose \((L, \beta)\) is a solution to \(P\). Let \(\sigma_L\) be an extension of \(\sigma_K\) to \(L\), \(q\) the prime of \(L\) induced by \(\sigma_L\), and let \(L_q = k_q \sigma_L(L)\). Then \((L_q, \beta_q)\) is an improper solution to \(P\), where \(\beta_q = \beta \sigma_L^*\), \(\sigma_L^*\) defined analogous to \(\sigma_K^*\).

By the localization hypothesis \(\mathcal{L}(P)\) we mean the following: let an embedding problem \(P = P(K/k, \Sigma, \gamma)\) be given, \(k\) a number field. Let \(S\) be a finite set of primes of \(k\), and let there be associated with each \(p \in S\) a prime \(p\) of \(K\) dividing \(q\) together with an embedding \(\sigma_K\) defined as above. Let \(P_p\) denote the local embedding problem induced by \(P\) for each \(p \in S\). Suppose that for each \(p \in S\), the set \(\mathcal{S}_p\) of improper solutions to \(P_p\) is not empty. Now let \(q\) be chosen from each \(\mathcal{S}_p\) an improper solution \((L_p, \gamma_p)\).

Then, there exists a finite Galois extension \(L/\mathbb{Q}\) such that \(G_{\mathbb{Q}}(L/\mathbb{Q}) = N,\) and the following hold: (i) for each \(p \in S\), there exists an extension \(a_p\) of \(a_k\) to \(L_p\), \(f\) a number field, \(L, L \supset \mathbb{Q}\), such that \(\gamma_p = \gamma(L_p) = L_p\), and (ii) there is an isomorphism \(\alpha: N \to N (N = \text{Gal}(L/\mathbb{Q}))\) such that for each \(p \in S\), the diagram

\[
\begin{align*}
G(L_p/\mathbb{Q}) & \xrightarrow{\sigma_L^*} \tilde{N}(q) \\
\downarrow \psi & \quad \downarrow \alpha \\
N & \xrightarrow{\varphi} N
\end{align*}
\]

is commutative, where \(\psi\) is induced by \(\sigma_L, \alpha = \gamma^{-1} \circ \beta^p, \text{Inc}_{L_p/\mathbb{Q}}\), and \(N(q)\) is the decomposition group of \(q\) in \(N\).

If \(\mathcal{L}(P)\) yields a solution field \(L\) to \(P\), then \(P\) is called localizable.

Theorem 5. Every irreducible embedding problem in which \(N = A_n\), the alternating group on \(n\) letters, \(n \neq 6, n > 4\), is localizable.

Example. Let \(p_0, p\) be rational primes, \(v\) a positive integer such that \(p \nmid p_0^v - 1, p^2 \nmid p_0^v - 1\); for example, \(p_0 = 7, p = 3, v = 1\). Let \(q = p_0^v\), \(N = PSL(p, q)\), the projective special linear group of degree \(n\) over \(GF(q)\), \(E = PGL(p, q)\), the projective general linear group. Let \(\Sigma\) be the associated canonical exact sequence. Let \(k = \mathbb{Q}(\zeta), \zeta\) a primitive \(v\)th root of 1, \(e\) is the order of \(E, K = k(a^{1/p})\), where, by virtue of the Approximation Theorem, \(a\) is chosen to have the following properties:

1. \(a\) is congruent to 1 mod \(q\) for every divisor \(g\) of \(e\) in \(k\) which is prime to \(p\).
2. \(a\) is congruent to 1 mod \(q_0\) for every divisor \(g\) of \(p\) in \(k\), where \(t_0\) is chosen sufficiently large so that every element which is congruent to 1 mod \(q_0\) is the \(p\)th power of an element of \(k\).
3. \(a\) is congruent mod \(q_0\) to a root of unity in \(k_0\) which is not a \(p\)th power, where \(q_0\) is any prime different from all \(g\) in 1 and 2 above.

Because of the way \(a\) is chosen, all the divisors of \(e\) in \(k\) split completely in \(K\). Finally, let \(\gamma\) be any isomorphism from \(G = \text{Gal}(K/k)\) onto \(G = E/N\). Then, the embedding problem \(P = P(K/k, \Sigma, \gamma)\) is not localizable.

Remark. The only general method known for constructing extensions
K of an arbitrary number field k with arbitrary solvable Galois group G is that of Safarevic [4]. All the extensions K/k that he constructs have the property that every prime divisor of the order of G in k splits completely in K. The example above shows that Safarevic's method, together with the localization hypothesis, is not sufficient to solve the inverse problem of Galois Theory.

REFERENCES