A REPRESENTATION OF A POSITIVE LINEAR MAPPING

BY OHOE KIM

Communicated by Dorothy Stone, January 4, 1972

Let X and Y be compact Hausdorff spaces. Let $C(X)$ and $C(Y)$ be the algebras of real valued continuous functions on X and Y respectively. $C(X)$ and $C(Y)$ are endowed with their natural partial ordering and their sup norm. Let $\Phi: C(X) \to C(Y)$ be a positive, bounded linear mapping.

X is said to have the Souslin property if every disjoint family of non-empty open subsets of X is countable.

A lattice L is said to satisfy the countable chain condition upward if the following is true: For any upper bounded subset A of L, there exists a countable subset B of A such that A and B have the same family of upper bounds. The countable chain condition downward on a lattice can be defined in a similar fashion.

A lattice L is said to satisfy the countable chain condition if L satisfies both the countable chain condition upward and the countable chain condition downward.

The purpose of this note is to announce the results on representation for Φ, based on the techniques developed in \cite{1}, \cite{2}.

To get the main theorem, we need the following series of propositions which are interesting in themselves.

PROPOSITION. For a given compact Hausdorff space X, there exists a complete Boolean space X^* and a mapping $\sigma: C(X) \to C(X^*)$ such that σ is an isometric, order preserving and algebra monomorphism.

REMARK. The construction of σ here is different from the one in \cite{3}. A part of the proof comes from an application of the Gelfand-Naimark theorem \cite{4}.

We study a necessary and sufficient condition on X under which $C(X^*)$ satisfies the countable chain condition so that we later use this result to represent Φ as the Maharam integral \cite{2}.

To this end, we introduce the concept of the countable chain condition on a Boolean algebra \cite{6} and the pseudocountable chain condition on $C(X)$.

$C(X)$ is said to satisfy the pseudocountable chain condition if every disjoint set of nonzero elements of $C(X)$ is countable. (Two functions f and g of $C(X)$ are disjoint if $\inf(f, g) = 0$.)

Keywords and phrases. Positive mapping, the Souslin property, representation, the Maharam integral.

1 The work announced here is a part of the author's doctoral thesis at the University of Rochester under the supervision of Professor D. Maharam Stone, to whom he wishes to express his warm thanks.

Copyright © American Mathematical Society 1972
PROPOSITION. X has the Souslin property if and only if $C(X^*)$ has the countable chain condition.

REMARK. The proof goes roughly as follows: First we show that the countable chain condition on $C(X^*)$, the pseudocountable chain condition on $C(X^*)$ and the Souslin property on X^* are all equivalent. Next, we show that X^* has the Souslin property if and only if X has the Souslin property.

We are concerned with an extension of Φ. Let $K(X)$ and $K(Y)$ be the spaces of Baire functions on X and Y respectively. In [5], it was shown that $K(X)$ and $K(Y)$ contain $C(X)$ and $C(Y)$ respectively.

PROPOSITION. There is a unique extension $\Phi : K(X) \to K(Y)$ of Φ with $\|\Phi \| = \|\Phi\|$. Furthermore, Φ is a positive, linear and countably additive mapping.

Finally, we have the following theorem.

THEOREM. Let X and Y have the Souslin property. Then Φ can be expressed as the Maharam integral.

REMARK 1. For the definition of the Maharam integral, we refer to [2]. Roughly, we may rephrase the theorem as follows. Under the above assumptions on X and Y, there exist compact Hausdorff spaces R and S such that $C(X^*)$ is “isomorphic” to a certain space of functions on $R \times S$ and $C(Y^*)$ is isomorphic to a space of functions on R, and under these isomorphisms, Φ corresponds to the mapping $f \mapsto f'$ where $f'(r) = \int_S f(r, s) \, d\mu$, the integral being formed with respect to an ordinary σ-finite numerical measure μ on S.

REMARK 2. The proof relies on the preceding propositions and the techniques e.g., a direct product $J \otimes U$ in Maharam’s sense, developed in [1], [2] to get a generalized form of the Maharam integral. To complete the proof, it is necessary to realize a certain set mapping as a point mapping. Detailed proofs and applications of these results will appear elsewhere.

REFERENCES

4. I. M. Gel’fand and M. A. Naimark, On the embedding of normed rings into the ring of operators in Hilbert space, Mat. Sb. 12 (54) (1943), 197–213. MR 5, 147.

DEPARTMENT OF MATHEMATICS, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213.