We announce the following result.

THEOREM. Suppose X is a complex manifold, A is an analytic subset of X of codimension ≥ 1, and G is an open subset of X which intersects every branch of A of codimension 1. Suppose V is a semipositive holomorphic vector bundle over $(X - A) \cup G$ (i.e. V carries a hermitian metric with positive semidefinite curvature form). Then the sheaf $\mathcal{O}(V)$ of germs of holomorphic sections of V can be extended uniquely to a reflexive coherent analytic sheaf over X.

COROLLARY. If $\dim X = 2$, then V can be extended uniquely to a holomorphic vector bundle over X.

The special case where A has codimension ≥ 2 and V is a line bundle was proved by Shiffman [3], [4]. An alternative proof of Shiffman's line bundle result was given by Harvey [1] whose proof works also when A is an arbitrary closed subset of X with Hausdorff $(2 \dim X - 3)$-measure 0.

Our Corollary implies a theorem of Thullen [6, Satz 2], because, in a special case general enough to give the general case, the line bundle associated to the analytic subset of codimension 1 which is to be extended is semipositive.

The proof of our Theorem follows from Hörmander's L^2 estimates for the $\bar{\partial}$ operator [2] and the easy part of the usual sheaf-extension techniques (see e.g. [5] and related papers listed in the bibliography there). Let $\Delta_r = \{ z \in C \mid |z| < r \}$ and $\Delta = \Delta_1$. We outline here the proof of our Theorem for the special case where $X = \Delta \times \Delta$, $A = \Delta \times \{0\}$, and $G = \Delta_{1/2} \times \Delta$.

Fix arbitrarily $\frac{1}{2} < r < 1$. Let f_1, \ldots, f_k be holomorphic sections of V over $\Delta \times (\Delta - \{0\})$ generating $\mathcal{O}(V)$ there. Take arbitrarily $c \in \Delta - \{0\}$.

Let $\rho = \rho(z_2)$ be a C^∞ function on $\Delta - \{0\}$ with compact support such that $\rho \equiv 1$ on a neighborhood of c. Since $(z_2 - c)^{-1} \bar{\partial}(\rho f_j) |_{\Delta_r \times (\Delta - \{0\})}$ has
finite L^2-norm with respect to the given metric h of V, by Hörmander’s method we can find a C^∞ section g_j of V over $\Delta_r \times (\Delta - \{0\})$ such that g_j has finite L^2-norm with respect to h and $\overline{\partial} g_j = (z_2 - c)^{-1}\overline{\partial}(\rho f_j)$. It is well known that a holomorphic function defined outside an analytic subset of codimension ≥ 1 can be extended across it if the function is locally L^2 at every point of the analytic subset. Hence $\rho f_j - (z_2 - c)g_j$ can be extended to a holomorphic section s_j of V over $(\Delta_r \times (\Delta - \{0\})) \cup G$. The sections s_1, \ldots, s_k generate $\mathcal{O}(V)$ at $\Delta_r \times \{c\}$. Likewise we can find holomorphic sections of V over $(\Delta \times (\Delta_r - \{0\})) \cup (\Delta_{1/2} \times \Delta_r)$ generating $\mathcal{O}(V)$ at $\Delta_{1/2} \times \{0\}$. The Theorem for this case now follows from well-known easy sheaf-extension techniques.

Theorems on extending semipositive holomorphic vector bundles across closed subsets with Hausdorff measure conditions can also be obtained.

Details will appear elsewhere.

REFERENCES

1. F. R. Harvey, A result on extending positive currents, preprint 1971.
2. L. Hörmander, L^2 estimates and existence theorems for the $\overline{\partial}$ operator, Acta Math. 113 (1965), 89–152. MR 31 #3691.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520