GROUP ACTIONS ON POINCARE DUALITY SPACES

BY THEODORE CHANG AND TOR SKJELBRED

Communicated by S. S. Chern, April 21, 1972

Let \(G = \mathbb{Z}_p \) for \(p \) prime and \(K = \mathbb{Z}_p \), or let \(G = S^1 \) and \(K = \mathbb{Q} \), and let \(G \) act on the compact space \(X \). In this paper, we outline two proofs of the following:

Theorem. Suppose the compact \(G \)-space \(X \) is a Poincaré duality space over \(K \) of formal dimension \(n \). Then each connected component of the fixed point set is a Poincaré duality space over \(K \), and, if \(G \neq \mathbb{Z}_2 \), has formal dimension congruent to \(n \) mod 2.

This solves affirmatively the conjecture of Su given in [5].

Let \(E_G \to B_G \) be the universal bundle for \(G \) and let \(X_G \) be the balanced product \((X \times E_G)/G\). The basic tools for both proofs are the fibre space \(X \to X_G \to B_G \) and the localization theorem of Borel ([1], [4]). In the case \(X \) is totally nonhomologous to zero in \(X_G \), Bredon has proven the Su conjecture [2]. However, this condition can be replaced by the two lemmas below, and this constitutes our algebraic proof. The second proof involves applying the localization theorem to a Thom space.

We wish to thank our advisor Wu-yi Hsiang for his suggestions and encouragement.

1. **Algebraic proof.** When \(G = S^1 \) or \(\mathbb{Z}_2 \), \(H^*(B_G) = K[t] \) where \(t \) is of degree two in the \(S^1 \) case and of degree one in the \(\mathbb{Z}_2 \) case. If \(G = \mathbb{Z}_p \) for \(p \) odd, then \(H^*(B_G) = K[t, s]/s^2 = 0 \) where \(s \) has degree one and \(t \) degree two. We consider the cohomology spectral sequence of the fibre space \(X \to X_G \to B_G \).

Lemma 1. (1) \(E_r \) is generated over \(K[t] \) by \(E_{r+1}^r \) and \(E_r^1 \) for \(G \neq \mathbb{Z}_2 \) or \(S^1 \), and by \(E_r^0 \) for \(G = \mathbb{Z}_2 \) or \(S^1 \).

(2) If \(j \geq r - 1 \), cup product with \(t \) gives an isomorphism of \(E_r^{j,k} \) into \(E_r^{j+2,k} \) for \(G \neq \mathbb{Z}_2 \) and of \(E_r^{j,k} \) into \(E_r^{j+1,k} \) for \(G = \mathbb{Z}_2 \) (\(r \geq 2 \)).

Lemma 2. Suppose there is a fixed point. Then the fundamental class \(U \) of \(H^n(X) \) survives in \(E^0_\infty \) and if \(u \in E^0_\infty \) is nontorsion with respect to \(H^*(B_G) \), there exists a \(v \in E^0_\infty \) such that \(uv = U \) (cup product).

Lemma 1 is proven by induction. 1 and 2 are true for \(G = S^1 \) since \(E_2 = H^*(B_G) \otimes H^*(X) \), and for \(G = \mathbb{Z}_p \) by known results of homological

Copyright © American Mathematical Society 1972

1024
algebra (see [3]). The induction step is then shown by straightforward degree arguments.

Lemma 2 is proven by restriction to a N-dimensional orientable submanifold $B \subset B_G$ for large N. Then since $H^i(X, Z_p) = Z_p$ and Z_p has no nontrivial action on Z_p, the local coefficients are trivial in the top dimension. Thus by piecing together over neighborhoods on which $X_G|_B$ is trivial, it is easy to show that $X_G|_B$ satisfies Poincaré duality with a cohomology fundamental class $[B]U$ where $X_G|_B$ is the portion of X_G over B and $[B]$ is the fundamental class of B. Using the fact that the inclusion $X_G|_B \to X_G$ induces an isomorphism on E^j_{ij} for $j \leq N$ implies it induces an injection on E^j_{ij} for $j \leq N$, and choosing N large enough so it induces an isomorphism on E^0_{i*}, the lemma follows by finding a class in $H^*(X_G|_B)$ dual to $[B]u$.

With these two lemmas the proof of Bredon is valid without change.

2. Geometric proof. We shall assume that

(i) X can be embedded in Euclidean space as a neighborhood retract.
(ii) X has a finite number of orbit types.

Property (i) is inherited by the fixed point set, as follows from (ii) and the equivariant embedding theorem. Because of (i) X is a Poincaré duality space over K of formal dimension n if and only if for any embedding $X \subset S^{n+r} = S$

\[x \mapsto x \cup U : H^*(X) \to H^*(S, S - X) \]

for some $U \in H^*(S, S - X)$.

Choose a G-equivariant embedding, and use K as the coefficient field. Then $H^*(S, S - X) = H^*_G(S, S - X)$ and we consider U as an element of both groups, where we define for any G-pair (A, A'), $H^*_G(A, A') = H^*(A_G, A'_G)$. By induction on the cells in B_G, we see that there is an isomorphism

\[\cup U : H^*_G(X) \to H^*_G(S, S - X). \]

Let Σ be the fixed sphere in S and $F = X \cap \Sigma$ the fixed set in X. Then the following diagram is commutative:

\[
\begin{array}{ccc}
H^*_G(S, S - X) & \xrightarrow{i^*} & H^*_G(\Sigma, \Sigma - F) \\
\cong \downarrow \cup U & & \cup i^*(U) \\
H^*_G(X) & \xrightarrow{i^*} & H^*_G(F)
\end{array}
\]

After localizing, the maps i^* and hence all the maps in the diagram are isomorphisms. Localizing here means tensoring over $K[t, t^{-1}] \subset H^*(B_G)$ with $K[t, t^{-1}]$. The map on the right splits according to the connected
components of F, so we may assume F is connected. Then

$$i^*(U) = t^n u_0 + t^{n-1} u_1 + \ldots + u_a + sv$$

where $u_i \in H^*(\Sigma, \Sigma - F)$, $u_0 \neq 0$, and $s = 0$ if $G = Z_2$ or S^1. Hence

$$\cup u_0 : H^*(F) \to H^*(\Sigma, \Sigma - F)$$

is an isomorphism, so F is a Poincaré duality space over K.

References