A HOMOTOPY CLASSIFICATION OF 2-COMPLEXES WITH FINITE CYCLIC FUNDAMENTAL GROUP

BY MICHEAL N. DYER AND ALLAN J. SIERADSKI
Communicated by M. L. Curtis, June 5, 1972

For an arbitrary positive integer n, let Z_n denote the cyclic group of order n, and let $P_n = S^1 \cup_n e^2$ be the pseudo-projective plane of order n.

Theorem. Let X be a connected finite 2-dimensional CW-complex with fundamental group Z_n. Then

1. X has the homotopy type of the sum $P_n \lor S^2 \lor \cdots \lor S^2$ of the pseudo-projective plane P_n and rank $H_2(X)$-copies of the 2-sphere S^2.

2. There is a homotopy equivalence $f: X \to P_n \lor S^2 \lor \cdots \lor S^2$ realizing any prescribed Whitehead torsion $\tau(f) \in Wh(Z_n)$.

The result (1) was established in the prime order case by W. H. Cockcroft and R. G. Swan [3]. The work of P. Olum on the self-equivalences of the pseudo-projective plane P_n ([6], [7]) shows that every element of the Whitehead group $Wh(Z_n)$ is realized as the torsion of some self-equivalence $P_n \to P_n$, so that (2) is a consequence of (1).

Corollary. For connected finite 2-dimensional CW-complexes with finite cyclic fundamental group, homotopy type and simple homotopy type coincide.

This generalizes to the nonprime order case a recent observation of W. H. Cockcroft and R. M. F. Moss [2].

Sketch of a Proof of the Theorem. Each CW-complex under consideration has the simple homotopy type of a complex P that is modeled in an obvious fashion on some presentation $\mathcal{P} = \langle a_1, \ldots, a_k : r_1, \ldots, r_m \rangle (m \geq k)$ of the cyclic group Z_n. There are Nielsen transformations which reduce such a presentation to one of pre-Abelian form [5, p. 140]

$$\mathcal{Q} = \langle b_1, \ldots, b_k : b_1 W_1, \ldots, b_k W_k, W_{k+1}, \ldots, W_m \rangle,$$
where the exponent sum of each word W_i with respect to each generator b_j is zero. Moreover, this Nielsen reduction $\mathcal{P} \to \mathcal{Q}$ corresponds to a simple homotopy equivalence $P \to Q$ of the associated topological models. Associated with each topological model P of a presentation \mathcal{P} is the cellular chain complex $C_*(P)$ of its universal covering \tilde{P}; the chain groups are free Z_n-modules which we give preferred bases according to a

AMS (MOS) subject classifications (1969). Primary 5540.
specific natural system. The chain complex \(C_\ast = C_\ast(\tilde{Q}) \) with its preferred bases is

\[
\begin{array}{cccc}
C_2(\tilde{Q}) & C_1(\tilde{Q}) & \partial_1 & C_0(\tilde{Q}) \\
\{u_1, \ldots, u_m\} & \delta_2 & \{v_1, \ldots, v_k\} & (0, \ldots, 0, x-1) \\
\end{array}
\]

where \(\{u_1, \ldots, u_m\} \) is the free \(\mathbb{Z}_n \)-module with the enclosed basis, and \(x \) is the generator of the multiplicative cyclic group \(\mathbb{Z}_n \).

Using Jacobinski's cancellation theorem for projective \(\mathbb{Z}_n \)-modules \([4, 8, p. 215], [9, p. 178]\), it is possible to choose a new basis \(w_1, \ldots, w_m \) for the chain group \(C_2 = C_2(\tilde{Q}) \) such that the matrix of the boundary operation \(\partial_2: C_2(\tilde{Q}) \to C_1(\tilde{Q}) \) with respect to this new basis for \(C_2 \) and the old basis \(v_1, \ldots, v_k \) for \(C_1 \) is

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & N & 0 & 0
\end{pmatrix}
\]

where the identity block is a \((k-1) \times (k-1) \) matrix and where \(N = 1 + x + \cdots + x^{n-1} \) is in the integral group ring of \(\mathbb{Z}_n \). The chain complex \(C_\ast \) with the new preferred basis for \(C_2 \) takes the form

\[
\begin{array}{cccc}
C_2 & C_1 & C_0 \\
\{w_1, \ldots, w_m\} & \delta_2 & \{v_1, \ldots, v_k\} & (0, \ldots, 0, x-1) \\
\{u_1, \ldots, u_m\} & \partial_1 & \{v_1, \ldots, v_k\} & (0, \ldots, 0, x-1) \\
\end{array}
\]

With these preferred bases, the chain complex \(C_\ast \) is realizable as the cellular chain complex \(C_\ast(\tilde{R}) \) of the universal covering \(\tilde{R} \) of the complex \(R \) modeled on the presentation \(\mathcal{R} = \langle c_1, \ldots, c_k : c_1, \ldots, c_k-1, c_k^n, 1, \ldots, 1 \rangle \) with \(m - k \) trivial relators. The identity map between the chain complexes \(C_\ast(\tilde{R}) \) and \(C_\ast(\tilde{Q}) \) can be realized by a map \(f: R \to Q \) that is necessarily a homotopy equivalence. This completes the proof of the theorem since the space \(R \) modeled on the presentation \(\mathcal{R} \) has the simple homotopy type of the sum \(P_n \vee S^2 \vee \cdots \vee S^2 \) of the pseudo-projective plane \(P_n \) and \(m - k \) copies of the 2-sphere \(S^2 \).

Full details of these and related results will appear elsewhere.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403