A CHARACTERIZATION OF GROWTH IN LOCALLY COMPACT GROUPS

BY J. W. JENKINS

Communicated by Calvin C. Moore, July 31, 1972

G will denote throughout a separable, connected, locally compact group. Fix a left Haar measure on G and for a measurable subset A of G, let $|A|_G$ denote the measure of A. The purpose of this note is to announce results concerning the asymptotic behavior of $|U^n|_G$ where U is a compact neighborhood of the identity e in G, and to indicate some of the applications these results have for various areas. The following definitions are required:

Definition 1. G has **polynomial growth** if there is a polynomial p such that for each compact neighborhood U of e, there is a constant $C(U)$ so that

$$|U^n|_G \leq C(U)p(n) \quad (n = 1, 2, \ldots)$$

($U^n = \{u_1 u_2, \ldots, u_n | u_i \in U, 1 \leq i \leq n\}$). G has **exponential growth** if for each compact neighborhood U of e there is a $t > 1$ such that

$$|U^n|_G \geq t^n \quad (n = 1, 2, \ldots).$$

Note that since G is connected, its “growth” will be determined by the behavior of $|U^n|_G$ for any one compact neighborhood U of e.

For $a, b \in G$, let $[a, b]$ denote the subsemigroup of G generated by a and b, i.e.,

$$[a, b] = \{x_1 x_2, \ldots, x_n | x_i \in \{a, b\}, 1 \leq i \leq n, n = 1, 2, \ldots\}.$$

$[a, b]$ is said to be free if $a[a, b] \cap b[a, b] = \emptyset$. A subset S of G is uniformly discrete if there is a neighborhood U of e in G such that $sU \cap tU = \emptyset$ for $s, t \in S, s \neq t$.

Definition 2. G is type NF if there does not exist $a, b \in G$ such that $[a, b]$ is free and uniformly discrete.

Let H be a connected Lie group with Lie algebra \mathfrak{h}, and let $g \to \text{Ad} g$ be the canonical adjoint representation of H on \mathfrak{h}. H is said to be type R if the eigenvalues of $\text{Ad} g$ are of absolute value one for each $g \in H$.

Since G is connected, there exists an arbitrarily small compact normal subgroup K of G such that G/K is a Lie group.

Definition 3. G is type R if there exists a compact normal subgroup K
such that \(G/K \) is a type \(R \) Lie group.

Theorem 4. The following conditions are equivalent:

(i) \(G \) has polynomial growth,

(ii) \(G \) is type \(NF \),

(iii) \(G \) is type \(R \).

Outline of Proof. (i) \(\Rightarrow \) (ii) is straightforward. To establish that (ii) \(\Rightarrow \) (iii), we define groups \(G_\theta \) for each \(\theta = \theta_1 + i\theta_2, \theta_1, \theta_2 \in \mathbf{R}, \theta_1 \neq 0 \) and show that each \(G_\theta \) is not type \(NF \) and that, if \(G \) is not type \(R \), \(G \) contains some \(G_\theta \) as a topological subgroup. It then follows that \(G \) is not type \(NF \).

To show that (iii) \(\Rightarrow \) (i), we first reduce to the case where \(G \) is simply connected and solvable. One can then write \(G = g_1(t_1)g_2(t_2)\cdots g_n(t_n) \) where each \(g_i(t_i) \) is a one parameter subgroup of \(G \). The argument proceeds by induction on \(n \), using the fact that since \(G \) is type \(R \), \(||\text{Ad}g(t)||^p(t) \) for some polynomial \(p \).

Comparison with discrete groups. Milnor [8] and Wolf [11] have investigated the growth of discrete solvable groups in connection with the study of fundamental groups of Riemannian manifolds with negative curvature. Combining their results with a recent result of Tits [10], one has the following: If \(H \) is a linear group over a field \(k \) with a finite set of generators \(A = A^{-1} \), then (i) either \(|A^n|_H \leq p(n) \) for some polynomial \(p \) and all \(n \geq 1 \) or there is a \(t > 1 \) such that \(|A^n|_H \geq t^n \) for all \(n \geq 1 \), and (ii) if \(|A^n|_H \) has polynomial growth, then \(H \) is a finite extension of a solvable group \(S \) and \(S \) is a finite extension of a nilpotent group. We obtain analogous results for connected groups as a corollary to Theorem 4.

Corollary 5. (i) Either \(G \) has polynomial growth or \(G \) has exponential growth.

(ii) If \(G \) is a connected Lie group with polynomial growth, then \(G \) is the compact extension of a solvable Lie group \(S \) and \(\text{Ad} S \) is an analytic subgroup of a compact extension of a nilpotent group.

Remark. The first part of this corollary shows that in a connected group, a compact set cannot grow at a rate intermediate to polynomial and exponential, for example, such as \(t^n/\log n \). This answers a question raised in Emerson and Greenleaf [4]. With regard to the second part, we remark that Hulanicki [5] has shown that a separable, locally compact group that is the compact extension of a nilpotent group cannot have exponential growth.

Strong amenability. In [4] Emerson and Greenleaf define a locally compact group \(H \) to be strongly amenable if for every compact neighborhood \(U = U^{-1} \) of \(e \) in \(H \).
Greenleaf has asked if every connected, amenable, unimodular group is necessarily strongly amenable. The following corollary to Theorem 4 provides a large class of counterexamples.

Corollary 6. If G is strongly amenable, then G is type R. If G is type R, then

$$\liminf_{n} \frac{|U^{n+1}|_H}{|U^n|_H} = 1$$

for each compact neighborhood U of e.

In particular, let G be the semidirect product of \mathbb{R} with \mathbb{R}^2 given by the homomorphism $\varphi: \mathbb{R} \to \text{Aut}(\mathbb{R}^2)$ where $\varphi(t)(x, y) = (e^{tx}, e^{-ty})$ for $t \in \mathbb{R}$, $(x, y) \in \mathbb{R}^2$. Then G is connected, amenable, unimodular but not type R, and hence, not strongly amenable.

An ergodic theorem. Let X be a compact, separable metric space and assume G is unimodular and has a jointly continuous action $G \times X \to X$ on X. A sequence of Borel subsets $\{A_n\}$ of G is called balanced with respect to the action of G on X if $0 < |A_n|_G < \infty$ for each n and if whenever μ is a probability measure on X invariant and ergodic under G and $f \in C(X)$, the continuous complex valued functions on X, then

$$\lim_{n} \frac{|A_n|_G^{-1} \int_{A_n} f(g \circ x_0) \, dg}{\int_{A_n} f(g \circ x_0) \, dg}$$

exist and equals $\int f \, d\mu$ for μ-almost all $x_0 \in X$.

An increasing sequence of subsets $\{A_n\}$ of G grows evenly in G if $0 < |A_n|_G < \infty$ for each n,

$$\lim_{k} |A_k|_G^{-1} (A_k A_n) \Delta A_k|_G = 0 = \lim_{k} |A_k|_G^{-1} (A_n A_k) \Delta A_k|_G$$

for each n, and there is a constant $c > 0$ such that $|A_n^{-1} A_n|_G \leq c |A_n|_G$ for each n.

Calderón [3] and Bewley [2] have proved the following generalization of Birkhoff's individual ergodic theorem: If G contains a sequence $\{A_n\}$ that grows evenly in G, then $\{A_n\}$ is balanced with respect to the action of G on X.

Auslander and Brezin [1] have shown that any connected, simply connected, nilpotent Lie group N contains a sequence of compact connected subsets that grow evenly in N. This is a special case of

Corollary 7. If G satisfies the equivalent conditions of Theorem 4 and
if $U = U^{-1}$ is a compact neighborhood of the identity, then a subsequence of $\{U^n| n = 1, 2, \ldots\}$ grows unevenly in G.

On symmetry of $\mathcal{L}^1(G)$. A Banach $*$-algebra \mathcal{U} is symmetric if $-xx^*$ is quasi-regular for each $x \in \mathcal{U}$, or equivalently by Raikov's Theorem [9], if

$$v(x) = \lim_{n} ||x^n||^{1/n} = \sup_x T_x$$

for each $x = x^* \in \mathcal{U}$, where the sup is taken over all $*$-representations $x \to T_x$ of \mathcal{U}. Hulanicki [5] has shown that if H is a separable, locally compact group such that $\lim_n |A^n|^{1/n} \leq 1$ for any compact subset A of G, then $v(x) = \lambda(x)$ for all $x = x^* \in \mathcal{L}^1(H)$ with compact support. Thus, any group with polynomial growth “almost” has a symmetric group algebra. (Observe that symmetry fails in this case only when the spectral radius is not continuous, and it is not known if this can ever occur in a group algebra.)

On the other hand, if H is a discrete group, $L^1(H)$ is not symmetric if H contains a free semigroup $[a, b]$ (cf. Jenkins [6]). There is evidence that suggests a similar statement obtains if G is not type NF. Theorem 4, therefore, lends support to a conjecture this author originally stated in [7], to wit, $\mathcal{L}^1(G)$ is symmetric if, and only if, G is type NF.

Proofs of these and related results will appear elsewhere. This author wishes to express his thanks to R. Howe for many helpful suggestions related to this work.

REFERENCES

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: Department of Mathematics, State University of New York, Albany, New York 12203