THE REPRESENTATION OF LATTICES BY MODULES

BY GEORGE HUTCHINSON

Communicated by Saunders Mac Lane, August 8, 1972

1. A quasivariety characterization of lattices representable by Λ-modules.

If Λ is a nontrivial ring with 1, a lattice L is "representable by Λ-modules" if it can be embedded in the lattice of submodules of some unitary left Λ-module M. This lattice of submodules is denoted $\Gamma(M;\Lambda)$.

A (lattice) "Horn formula" is an open formula:

\[(e_1 = e_2 \& e_3 = e_4 \& \ldots \& e_{n-3} = e_{n-2}) \Rightarrow e_{n-1} = e_n,\]

where e_1, e_2, \ldots, e_n are lattice polynomials.

Main Theorem. *For every commutative ring Λ, there exists a set $J(\Lambda)$ of Horn formulas such that a lattice L is representable by Λ-modules if and only if every formula of $J(\Lambda)$ is satisfied in L. Each member of $J(\Lambda)$ is constructible by a finite sequence of four basic operations.*

That is, the class $\mathcal{L}(\Lambda)$ of lattices representable by Λ-modules is the "quasivariety" of lattices satisfying $J(\Lambda)$, for commutative Λ.

Outline of Proof. For Λ commutative, let $i: L \to \Gamma(M;\Lambda)$ be an embedding for some M. Without loss of generality, assume that L has a smallest element ω, and $i(\omega) = 0$. Motivated by the "abelian" lattice $\Gamma_f(G^N)$ of [2, 4.2] with $G = M$, we consider "constraint systems" in variables a_k (corresponding to coordinate positions in M^N) and "auxiliary" variables b_k (with existential quantifiers understood) for k in $N = \{1, 2, 3, \ldots\}$. Consider $r = (d_1, d_2, d_3, d_4)$ below.

\[
\begin{align*}
(d_1) &\quad a_1 \in x_1, \quad a_2 \in x_2, \quad a_k \in \omega \quad \text{for} \quad k \geq 3 \ (x_1, x_2 \in L). \\
(d_2) &\quad b_1 \in x_3, \quad b_2 \in x_1, \quad b_k \in \omega \quad \text{for} \quad k \geq 3 \ (x_3 \in L). \\
(d_3) &\quad a_1 - a_2 - b_1 = 0. \\
(d_4) &\quad a_1 - \lambda \lambda_0 b_2 = 0 \quad (\lambda_0 \in \Lambda).
\end{align*}
\]

A "solution" $f: N \to M$ of r satisfies

\[
\begin{align*}
(e_1) &\quad f(1) \in i(x_1), \quad f(2) \in i(x_2), \quad f(k) \in i(\omega) = 0 \quad \text{for} \quad k \geq 3 \ (d_1). \\
(e_2) &\quad f(1) - f(2) \in i(x_3) \quad (d_3, b_1 \in x_3). \\
(e_3) &\quad \text{There exists } v \in i(x_1) \text{ such that } \lambda \lambda_0 v = f(1) \ (d_4, b_2 \in x_1).
\end{align*}
\]

Copyright © American Mathematical Society 1973
From the document, the text can be transcribed as follows:

Formally, let \(N_1 = \{a_k : k \in N\} \), let \(N_2 = N_1 \cup \{b_k : k \in N\} \), and let \(M_1^{\infty} \) and \(M_2^{\infty} \) be the \(\Lambda \)-modules of all functions \(N_1 \to M \) and \(N_2 \to M \), respectively. Let a "\(\Lambda \)-equation" be a function \(g : N_2 \to \Lambda \) such that \(g(a_k) = g(b_k) = 0 \) except for finitely many \(k \) in \(N \); \(g \) determines the "linear solution set" \(g^* \) in \(\Gamma(M_2^{\infty}; \Lambda) \):

\[
g^* = \left\{ m \in M_2^{\infty} : \sum_{k=1}^{\infty} (g(a_k)m(a_k) + g(b_k)m(b_k)) = 0 \right\}.
\]

A "constraint function" is a function \(\alpha : N_2 \to L \) such that \(\alpha(a_k) = \alpha(b_k) = \omega \) except for finitely many \(k \); it determines a "box" \(i_\alpha(\alpha) \) in \(\Gamma(M_2^{\infty}; \Lambda) \):

\[
i_\alpha(\alpha) = \{ m \in M_2^{\infty} : m(c_k) \in \alpha(c_k) \quad \text{for} \quad c_k \in N_2 \}.
\]

If \(\alpha \) is a constraint function and \(G = \{g_1, g_2, \ldots, g_s\} \) is a finite (possibly empty) set of \(\Lambda \)-equations, the pair \((G, \alpha) \) is a "constraint system". An "extended solution" \(m : N_2 \to M \) of \((G, \alpha) \) is a member of

\[
\mu_0(G, \alpha) = i_\alpha(\alpha) \cap g_1^* \cap g_2^* \cap \cdots \cap g_s^* \quad \text{in} \quad \Gamma(M_2^{\infty}; \Lambda).
\]

A "solution" \(m' : N_1 \to M \) of \((G, \alpha) \) is a restriction \(m' = m|N_1 \) of an extended solution \(m \). Let \(D(L; \Lambda) \) denote the set of all constraint systems. Given \(M \) and \(\iota \), define \(\mu : D(L; \Lambda) \to \Gamma(M_1^{\infty}; \Lambda) \) by the "solution set" \(\mu(G, \alpha) = \{ m|N_1 : m \in \mu_0(G, \alpha) \} \). Since \(\iota(\omega) = 0 \), \(\mu(G, \alpha) \) has "finite support" as in [2, p. 181].

Now, \(D(L; \Lambda) \) can be defined for any lattice \(L \), not just those in \(\mathcal{L}(\Lambda) \). Meet and join operations, corresponding to solution set intersection and sum, can be defined abstractly in \(D(L; \Lambda) \). We can also define "equivalence" of constraint systems, obtaining a congruence \(E(L; \Lambda) \) on \(D(L; \Lambda) \). If an embedding \(i : L \to \Gamma(M_1^{\infty}; \Lambda) \) with \(i(\omega) = 0 \) exists, the corresponding \(\mu : D(L; \Lambda) \to \Gamma(M_1^{\infty}; \Lambda) \) preserves meet and join and takes equivalent constraint systems modulo \(E(L; \Lambda) \) into the same solution set. Seven "rules of equivalence" generate \(E(L; \Lambda) \); we reconsider \(r = (d_1, d_2, d_3, d_4) \) to suggest them:

- **Constraint decrease:** The lattice constraint of \(a_1 \) can be changed to \(x_1 \land (x_2 \lor x_3) \), since \(d_3 \) can be solved for \(a_1, a_1 = a_2 + b_1 \), and \(a_2 + b_1 \) is in \(x_2 \lor x_3 \). **Linear combination augmentation:** Any \(\Lambda \)-equation of the form \(\lambda d_3 + \lambda' d_4 \) can be added to \(r \). **Defined variable augmentation:** We can "define" an unused auxiliary variable, say \(b_4 \), by adding a \(\Lambda \)-equation, say \(\lambda a_2 + \lambda' b_2 + b_4 = 0 \), if we change the lattice constraint of \(b_4 \) to \(x_2 \lor x_1 \) \((-\lambda a_2 - \lambda' b_2 \) is in \(x_2 \lor x_1 \)). **Union augmentation:** Add the \(\Lambda \)-equation \(a_2 - b_7 - b_9 = 0 \), for example, expressing a variable \(a_2 \) as a sum of two unused auxiliary variables. Then change the lattice constraints of \(b_7 \) and \(b_9 \) to some \(x_4 \) and \(x_5 \) in \(L \), respectively, such that \(x_2 \subset x_4 \lor x_5 (a_2 \subset x_2) \). **Null variable augmentation:** Terms \(\lambda a_5 \) and \(\lambda' a_5 \)
can be added to the Λ-equations d_3 and d_4, respectively, since $a_5 \in \omega$ and $\iota(\omega) = 0$. **Inessential variables augmentation:** We can add finitely many Λ-equations in the variables b_k, $k \geq 3$, and make finitely many arbitrary changes in the lattice constraints of those variables. **Renumbering:** b_1 and b_2 can be replaced throughout r by any two other auxiliary variables.

The solution set of r is unchanged by any of the above modifications. The primary fact about $M(L; \Lambda) = D(L; \Lambda)/E(L; \Lambda)$ is that it is an abelian lattice under the induced meet and join. Intuitively, $M(L; \Lambda)$ acts like the lattice of submodules with finite support of M^N, for some hypothetical Λ-module M.

Associated with any abelian lattice X is a small abelian category A_X [2, Main Theorem]. We next construct for each object A of $A_{M(L; \Lambda)}$ a ring homomorphism ζ_A preserving 1 from Λ into the ring of endomorphisms of A ($\zeta_A(\lambda)$ is a formal analogue of $\lambda 1_A$). Let Ab and Λ-Mod be the usual categories of abelian groups and of Λ-modules, respectively. By [1, Theorem 7.14], there exists an exact embedding functor $F: A_{M(L; \Lambda)} \to \text{Ab}$. Defining $\lambda x = (F(\zeta_A(\lambda)))(x)$ makes $F(A)$ into a Λ-module, denoted $G(A)$ ($F(\zeta_A(\lambda)) = \lambda 1_{G(A)}$). We can prove that $\zeta_B(\lambda)f = f\zeta_A(\lambda)$ for $f: A \to B$ in $A_{M(L; \Lambda)}$, so $Ff: G(A) \to G(B)$ is Λ-linear. But then $G(\Lambda)$ and $Gf = Ff$ define an exact embedding functor $G: A_{M(L; \Lambda)} \to \Lambda$-$\text{Mod}$. Because of G, the lattice of subobjects of each object of $A_{M(L; \Lambda)}$ is in $\mathcal{L}(\Lambda)$. But then every interval sublattice of $M(L; \Lambda)$ is in $\mathcal{L}(\Lambda)$ by [2, 3.24], and $M(L; \Lambda) \in \mathcal{L}(\Lambda)$ follows, using a direct limit of Λ-modules.

We now define a lattice homomorphism $\psi: L \to M(L; \Lambda)$, similar to ψ in [2, 4.3]. For x in L, $\psi(x)$ is the equivalence class in $M(L; \Lambda)$ of (\varnothing, x) in $D(L; \Lambda)$ given by $\theta_x(a_1) = x$, $\theta_x(c_k) = \omega$ for $c_k \in N_2 - \{a_1\}$. If ψ is one-to-one, it embeds L into $M(L; \Lambda)$, and so L is in $\mathcal{L}(\Lambda)$. Suppose L is in $\mathcal{L}(\Lambda)$ with embedding $i: L \to \Gamma(M; \Lambda)$, $i(\omega) = 0$. Since equivalent constraint systems have equal solution sets, $\mu: D(L; \Lambda) \to \Gamma(M_1^\infty; \Lambda)$ induces a function $\bar{\mu}: M(L; \Lambda) \to \Gamma(M_1^\infty; \Lambda)$. Clearly $\bar{\mu}\psi(x) = \mu(\varnothing, \theta_x) = \bar{\psi}(x)$, where $\bar{\psi}: \Gamma(M; \Lambda) \to \Gamma(M_1^\infty; \Lambda)$ is given by

$$\bar{\psi}(M') = \{m \in M_1^{\infty}: m(a_1) \in M', m(a_k) = 0 \text{ for } k > 1\}.$$

So, $\bar{\psi} = \bar{\mu}\psi$. Since $\bar{\psi}$ is one-to-one, so is ψ. Therefore, L is in $\mathcal{L}(\Lambda)$ if and only if ψ is one-to-one.

Four of the rules generating $E(L; \Lambda)$ are called “direct reductions”, namely constraint decrease, linear combination augmentation, defined variable augmentation and union augmentation. A key argument shows that ψ is one-to-one iff, for each x in L and sequence r_1, r_2, \ldots, r_n in $D(L; \Lambda)$ such that $r_1 = (\varnothing, \theta_x)$, $r_n = (G, x)$ and r_{i+1} is obtained by a direct reduction of r_i ($1 \leq i < n$), we have $x(a_1) = x$. Each of the infinitely
many Horn formulas of $J(\Lambda)$ is generated by a finite sequence of four operations. These operations imitate the four rules of direct reduction, with lattice polynomials replacing elements of L. Using the above, we show that ψ is one-to-one iff every formula of $J(\Lambda)$ is satisfied in L, and the main theorem follows.

Corollary. Every abelian lattice is representable by abelian groups.

2. Comparison of classes of representable lattices. Let Λ and Λ' be rings with 1, not necessarily commutative. Then $\mathcal{L}(\Lambda) \subseteq \mathcal{L}(\Lambda')$ if there exists a ring homomorphism $\Lambda \rightarrow \Lambda'$ preserving 1, or if there exists a (Λ', Λ)-bimodule M which is faithfully flat as a right Λ-module. A simple change of rings argument proves the first result. For the other: the exact embedding functor $M \otimes_{\Lambda} -$ from Λ-Mod into Λ'-Mod induces an embedding from the lattice of subobjects of any M_0 in Λ-Mod into the lattice of subobjects of $M \otimes_{\Lambda} M_0$ in Λ'-Mod. Then $\mathcal{L}(\Lambda) = \mathcal{L}(\Lambda')$ if Λ is a regular ring and unitary subring of Λ', by known ring theory. Let \mathbb{Q} denote the field of rationals and \mathbb{Z}_n the ring of integers modulo $n, n \geq 2$. So, $\mathcal{L}(\Lambda) = \mathcal{L}(\mathbb{Q})$ if Λ has a unitary subring isomorphic to \mathbb{Q}. Also, $\mathcal{L}(\Lambda) = \mathcal{L}(\mathbb{Z}_n)$ if Λ has characteristic n for n a square-free number (prime, or a product of distinct primes). Let P_Λ be the set of primes p such that $1 + 1 + \cdots + 1$ (p times) is invertible in Λ. If P is a set of primes, let $\mathbb{Q}(P)$ be the unitary subring of \mathbb{Q} generated by $\{p^{-1} : p \in P\}$. If Λ has characteristic zero, a is the two-sided ideal of torsion elements of Λ and $P_{\Lambda/a} = P_\Lambda$, then $\mathcal{L}(\Lambda) = \mathcal{L}(\mathbb{Q}(P_\Lambda))$. So, $\mathcal{L}(\Lambda) = \mathcal{L}(\mathbb{Q}(P_\Lambda))$ if Λ is torsion-free.

Some of the above results are the best possible. Under various hypotheses, $\mathcal{L}(\Lambda) = \mathcal{L}(\Lambda') \neq \emptyset$ is proved by constructing a Horn formula satisfied in all lattices in $\mathcal{L}(\Lambda')$ but not in all lattices in $\mathcal{L}(\Lambda)$. These formulas reflect properties of the (additive) multiples $k \cdot 1_M = 1_M + 1_M + \cdots + 1_M$ for M an arbitrary Λ-module. For example, $k \cdot 1_M = 0$ if the characteristic of Λ divides k, and $k \cdot 1_M$ is an automorphism if $k \cdot 1$ is invertible in Λ. So, we can show that $\mathcal{L}(\Lambda) = \mathcal{L}(\Lambda') \neq \emptyset$ if the characteristic of Λ does not divide the (nonzero) characteristic of Λ', and therefore $\mathcal{L}(\Lambda) \neq \mathcal{L}(\Lambda')$ if Λ and Λ' have different characteristics. If p is a prime invertible in Λ' but not in Λ, then $\mathcal{L}(\Lambda) - \mathcal{L}(\Lambda') \neq \emptyset$, and so $\mathcal{L}(\Lambda) \neq \mathcal{L}(\Lambda')$ if $P_\Lambda \neq P_{\Lambda'}$. If n is not square-free, then there exists Λ with characteristic n such that $\mathcal{L}(\Lambda) \neq \mathcal{L}(\mathbb{Z}_n)$. Also, if Λ has characteristic zero and torsion ideal a, then $\mathcal{L}(\Lambda) \neq \mathcal{L}(\mathbb{Q}(P_\Lambda))$ if $P_{\Lambda/a} \neq P_\Lambda$. If P is a proper subset of the primes or is empty, then Λ with characteristic zero exists such that $P_\Lambda = P$ but $\mathcal{L}(\Lambda) \neq \mathcal{L}(\mathbb{Q}(P))$.

The detailed proofs of these results have been submitted for publication.

C. Herrmann and W. Poguntke have recently communicated to the author a theorem which implies that $\mathcal{L}(\Lambda)$ admits ultraproducts, for
any ring Λ with 1. It then follows nonconstructively that $\mathcal{L}(\Lambda)$ is always a quasivariety, using the known result that a class of algebras admitting isomorphic images, subalgebras, products and ultraproducts is a quasivariety. Another of their results implies that $\mathcal{L}(\Lambda)$ is not finitely first-order axiomatizable if Λ is a unitary subring of \mathbb{Q}.

REFERENCES
