Periodic and Homogeneous States on a Von Neumann Algebra. I

By Masamichi Takesaki

Communicated by Jack E. Feldman, June 14, 1972

This paper is devoted to announcing a structure theorem for von Neumann algebras admitting a periodic homogeneous faithful state (see Definitions 1 and 2).

Let \(\mathcal{M} \) be a von Neumann algebra. Suppose that \(\phi \) is a faithful normal state on \(\mathcal{M} \). We denote by \(\sigma_\phi^t \) the modular automorphism group of \(\mathcal{M} \) associated with \(\phi \). Let \(G(\phi) \) denote the group of all automorphisms of \(\mathcal{M} \) which leave \(\phi \) invariant. We introduce the following terminologies concerning \(\phi \).

Definition 1. If there exists \(T > 0 \) such that \(\sigma_\phi^T \) is the identity automorphism of \(\mathcal{M} \), denoted by \(1 \), then we call \(\phi \) periodic. The smallest such number \(T \) is called the period of \(\phi \).

Definition 2. We call \(\phi \) homogeneous if \(G(\phi) \) acts ergodically on \(\mathcal{M} \); that is, the fixed points of \(G(\phi) \) are only scalar multiples of the identity.

Definition 3. We call \(\phi \) ergodic if \(\{ \sigma_\phi^t \} \) is ergodic.

The ergodicity of \(\phi \) implies the homogeneity of \(\phi \), since \(\{ \sigma_\phi^t \} \) is contained in \(G(\phi) \). Furthermore, if \(\mathcal{M} \) admits an ergodic state, then \(\mathcal{M} \) must be a factor.

Now, suppose \(\phi \) is a periodic homogeneous faithful normal state on \(\mathcal{M} \), which will be fixed throughout the discussion. Considering the cyclic representation of \(\mathcal{M} \) induced by \(\phi \), we assume that \(\mathcal{M} \) acts on a Hilbert space \(\mathcal{H} \) with a distinguished cyclic vector \(\xi_0 \) such that \(\phi(x) = (x|\xi_0|\xi_0) \), \(x \in \mathcal{M} \). According to the theory of modular Hilbert algebras (which the author proposes to call Tomita algebras), there exists the positive self-adjoint operator \(\Delta \) on \(\mathcal{H} \) and the unitary involution \(J \) on \(\mathcal{H} \) such that

\[
\sigma_\phi^t(x) = \Delta^{it}x\Delta^{-it}, \quad x \in \mathcal{M};
\]

\[
\Delta^{it}\xi_0 = \xi_0;
\]

\[
J\mathcal{M}J = \mathcal{M}^*; \quad J\Delta^{it}J = \Delta^{-it}.
\]

Put \(\alpha = e^{-2\pi i/T} \) with \(T \) the period of \(\phi \). Obviously, we have \(0 < \alpha < 1 \). We introduce the following notations:

\(\text{AMS (MOS) subject classifications (1970). Primary 46L10.}\)

\(\text{Key words and phrases. von Neumann algebras, modular automorphism group, periodic state, homogeneous state.}\)

\(^1\text{The preparation of this paper was supported in part by NSF grant GP-28737.}\)

Copyright © American Mathematical Society 1973
For $n = 0, \pm 1, \pm 2, \ldots$. Then M_0 is nothing but the centralizer M_0 of ϕ in the sense of [11, Definition 8.6]. The ergodicity of $G(\phi)$ implies that $M_n \neq \{0\}$ for every integer n. The subspace M_n of M is also given by

$$M_n = \left\{ x \in M : \phi(x) = \alpha^n \phi(yx) \text{ for every } y \in M \right\},$$

due to Størmer [9].

Lemma 4. We have the following:

(i) $M_n M_m \subset M_{n+m}$, $M_n^* = M_{-n}$;

(ii) $M_n H_n \subset H_{n+m}$, $JH_n = J_{-n}$;

(iii) $H = \sum_{n = -\infty}^{\infty} H_n$;

(iv) $H_n = \left[M_n \xi_0 \right]$.

It is easily seen that the algebraic direct sum $\sum_{n = -\infty}^{\infty} M_n$ is a σ-weakly dense *-subalgebra of M. If N is a von Neumann subalgebra of M invariant under σ, then the algebraic direct sum $\sum_{n = -\infty}^{\infty} (N \cap M_n)$ is also a σ-weakly dense *-subalgebra of N. Since $M_n^* M_n \subset M_0$ and $M_n M_n^* \subset M_0$, the absolute value $|x|$ of every element x in M_n falls in M_0. Hence, if $x \in M_n$ commutes with M_0, then x commutes with $x^* x$ and xx^*, so that x is normal, that is, $x^* x = xx^*$. But this is impossible unless x is in M_0 because $\alpha^n \phi(x^* x) = \phi(xx^*)$. Thus we obtain the following:

Proposition 5. The relative commutant $M_0 \cap M$ of M_0 in M is contained in M_0 as the center of M_0, denoted by Z_0.

We denote by π_n the normal representation of M_0 on H_n defined by restricting the action of M_0 to H_n. We also define the antirepresentation π_n' of M_0 on H_n by

$$\pi_n'(a) = J\pi_n(-a)^* J, \quad a \in M_0.$$

For each $x \in M_n$, we have

$$\pi_n(a)x_0 = ax_0;$$

$$\pi_n'(a)x_0 = xa_0, \quad x \in M_0.$$

Hence π_n and π_n' commute. Making use of the ergodicity of ϕ, we can prove the following:

Lemma 6. Both π_n and π_n' are faithful.

For each $g \in G(\phi)$, we define a unitary operator $U(g)$ on H by

$$U(g)x_0 = g(x)x_0, \quad x \in M.$$

Then the map $:g \in G(\phi) \mapsto U(g)$ is a representation of $G(\phi)$ and covariant
with the action of \mathcal{M}. It is easily seen that

$$U(g)\pi_n(x)U(g)^* = \pi_n \circ g(x);$$

$$U(g)\pi'_n(x)U(g)^* = \pi_n \circ g(x), \quad x \in \mathcal{M}_0, g \in G(\phi).$$

The ergodicity of $G(\phi)$ on \mathcal{M}_0 yields that the coupling operator of $\{\pi_n(\mathcal{M}_0), \mathfrak{S}_n\}$ in the sense of Griffin [6] is a scalar multiple of the identity. Therefore, $\{\pi_n(\mathcal{M}_0), \mathfrak{S}_n\}$ has either a separating vector or a cyclic vector.

Lemma 7. For $n \geq 1$, $\{\pi_n, \mathfrak{S}_n\}$ does not have a separating vector.

Proof. Since every $\xi \in \mathfrak{S}_n$ is analytic for Δ^u, there exists a closed operator a affiliated with \mathcal{M} such that $\xi = a\xi_0$. We can choose a so that $\Delta^u a \Delta^{-u} = \alpha^u a$. Let $a = uh$ be the polar decomposition of a. Then h is affiliated with \mathcal{M}_0 and $u \in \mathcal{M}_n$. If ξ is separating, then $x\xi = 0, x \in \mathcal{M}_0$, implies $x = 0$, so that $xu = 0$ implies $x = 0$. Hence $uu^* = 1$. But $x^*\phi(uu^*) = \phi(uu^*) = 1$, so that $\phi(uu^*) = \alpha^{-n} > 1$ if $n \geq 1$, a contradiction.

Therefore, $\{\pi_n, \mathfrak{S}_n\}, n \geq 1$, has a cyclic vector ξ, which is separating for $\pi_{-n}(\mathcal{M}_0)$. If $a = ku$ is the right polar decomposition of the above a in Lemma 7, then $ux = 0, x \in \mathcal{M}_0$, implies $x = 0$, so that we have $u^*u = 1$, and $\phi(uu^*) = \alpha^n$. We choose an element u_1 in \mathcal{M}_1 with $u_1^*u_1 = 1$, and fix it. Then u_1^* falls in \mathcal{M}_n for $n \geq 1$, and $\mathcal{M}_n = \mathcal{M}_0 u_1^n$ because $\mathcal{M}_n u_1^n \subseteq \mathcal{M}_0$. Therefore we have

$$\mathcal{M}_n = \mathcal{M}_0 u_1^n;$$

$$\mathcal{M}_{-n} = u_1^{*n} \mathcal{M}_0, \quad n = 1, 2, \ldots .$$

Thus the von Neumann algebra \mathcal{M} is generated by \mathcal{M}_0 and the isometry u_1. The choice of u_1 is unique in the following sense:

Lemma 8. Every partial isometry v in \mathcal{M}_1 is of the form wu_1 with a partial isometry w in \mathcal{M}_0. Let e_{-n} denote the projections $u_1^nu_1^*\mathcal{M}_0$ for $n \geq 1$. Then Lemma 8 implies, together with the ergodicity of $G(\phi)$, that

$$e_{-n}^\perp = \alpha^n 1.$$

Thus we conclude that \mathcal{M}_0 is of type I_1. We denote by e_n the projection $J e_{-n} J$ in \mathcal{M}_0. Let $\mathfrak{S}_n = e_n \mathfrak{S}_0$, for every integer n.

Define an isomorphism θ of \mathcal{M}_0 onto $e_{-1} \mathcal{M}_0 e_{-1}$ by $\theta(x) = u_1 xu_1^*$, $x \in \mathcal{M}_0$. Then the isomorphism θ induces an automorphism $\tilde{\theta}$ of \mathfrak{Z}_0 by the equality $\theta(a) = \tilde{\theta}(a)e_{-1}, a \in \mathfrak{Z}_0$. It follows from Lemma 8 that $\tilde{\theta}$ does not depend on the choice of u_1.

Proposition 9. The center \mathfrak{Z} of \mathcal{M} is precisely the fixed point subalgebra of \mathfrak{Z}_0 with respect to $\tilde{\theta}$. Therefore, \mathcal{M} is a factor if and only if $\tilde{\theta}$ is ergodic on \mathfrak{Z}_0.
PROPOSITION 10. For $n \geq 1$, we have
\[
\{\pi_n, S_n\} \cong \{\pi_0, S_n\} \quad \text{and} \quad \{\pi_{-n}, S_{-n}\} \cong \{\theta^n, S_{-n}\},
\]
where $\{\pi_0, S_n\}$ means the restriction of π_0 to the invariant subspace S_n.

We denote by ϕ_0 the restriction of ϕ to M_0.

THEOREM 11. In the pre-Hilbert space metric given by the state ϕ, the von Neumann algebra M is decomposed as
\[
M = \cdots \oplus u^n_1 M_0 \oplus G \cdots \oplus u^n_1 M_0 \oplus M_0u_1 \oplus \cdots \oplus M_0u^n_1 \oplus \cdots.
\]
The algebraic structure of (M, ϕ) is determined by $\{M_0, \theta, \phi_0\}$ in the following sense: Let \mathcal{M} be another von Neumann algebra equipped with a periodic homogeneous faithful state $\tilde{\phi}$ of period T and let \mathcal{M} be decomposed with respect to $\tilde{\phi}$ as
\[
\mathcal{M} = \cdots \oplus \tilde{u}^n_1 \tilde{M}_0 \oplus \cdots \oplus \tilde{u}^n_1 \tilde{M}_0 \oplus \tilde{M}_0 \tilde{u}_1 \oplus \cdots \oplus \tilde{M}_0 \tilde{u}^n_1 \oplus \cdots.
\]
Suppose \tilde{u}_1 gives rise to an isomorphism of $\tilde{\phi}$ of \tilde{M}_0 onto \mathcal{M} onto $e^{-1} M_0 e^{-1}$. Then there exists an isomorphism σ of M onto \mathcal{M} with $\phi = \tilde{\phi} \circ \sigma$ if and only if there exists an isomorphism σ_0 of M_0 onto \mathcal{M}_0 and a partial isometry w in M_0 such that $w\theta(x)w^* = \sigma_0^{-1} \circ \tilde{\phi} \circ \sigma_0(x)$, $x \in M_0$, and $\phi_0 = \tilde{\phi}_0 \circ \sigma$, where ϕ_0 (resp. $\tilde{\phi}_0$) means the restriction of ϕ (resp. $\tilde{\phi}$) to M_0 (resp. \mathcal{M}_0).

Conversely, if M_0 is a von Neumann algebra of type II$_1$. Let ϵ be a projection of M_0 with $e^b = \alpha$, $0 < \alpha < 1$. Suppose θ is an isomorphism of M_0 onto eM_0e. Then θ induces an automorphism $\tilde{\theta}$ of the center Z_0 of M_0 such that $\theta(a)e = \theta(a)$, $a \in Z_0$. Let ϕ_0 be a $\tilde{\theta}$-invariant faithful normal state on Z_0. We extend ϕ_0 to a faithful normal trace on M_0 by $\phi_0(x) = \phi_0(x^b)$, $x \in M_0$. Suppose G denotes the group of all automorphisms g of M_0 such that there exists a partial isometry w_θ in M_0 with $g \circ \theta \circ g^{-1}(x) = w_\theta \theta(x)w_\theta^*$, and such that $\phi_0 \circ g = \phi_0$ (this is satisfied automatically if $\tilde{\theta}$ is ergodic). Such an automorphism is called admissible.

THEOREM 12. In the above situation, if G acts ergodically on the center Z_0, then there exists a von Neumann algebra \mathcal{M} with a periodic homogeneous faithful state ϕ of period $T = -2\pi/\log \alpha$ such that $\{M_0, \theta, \phi_0\}$ appears in the decomposition of \mathcal{M} associated with ϕ as described in Theorem 11.

We denote by $\mathcal{R}(M_0, \theta, \phi_0)$ the von Neumann algebra determined by (M_0, θ, ϕ_0) in Theorems 11 and 12. We can describe the automorphism group $G(\phi)$ in terms of G and the unitary group of Z_0. In order to distinguish the algebraic type of $\mathcal{R}(M_0, \theta, \phi_0)$, we employ new results of A. Connes [4] concerning modular automorphism groups.
For a von Neumann algebra \mathcal{M}, let $\text{Aut}(\mathcal{M})$ (resp. $\text{Int}(\mathcal{M})$) denote the group of all (resp. inner) automorphisms of \mathcal{M}. Let $\text{Out}(\mathcal{M})$ denote the quotient group $\text{Aut}(\mathcal{M})/\text{Int}(\mathcal{M})$. A. Connes showed recently that the canonical image $\hat{\sigma}^T$ of the modular automorphism group σ^T in $\text{Out}(\mathcal{M})$ does not depend on the choice of ϕ; hence we denote it simply by $\hat{\sigma}^T$. Furthermore he proved that if σ^T is inner for some $T > 0$, then σ^T is given by a unitary operator in the center of the centralizer \mathcal{M}_ϕ of ϕ.

Now, we return to the original situation. In order to avoid any possible confusion, we denote by T_0 the period of our state ϕ.

Theorem 13. For $T > 0$, σ^T is inner, that is, $\hat{\sigma}^T = \text{identity}$, if and only if α^{-iT} is a point spectrum of the automorphism θ of \mathcal{Z}_0.

Therefore, if we have ergodic automorphisms θ in \mathcal{Z}_0 of different point spectral type, then the resulting factors $\mathcal{H}(\mathcal{M}_0, \theta, \phi_0)$ are nonisomorphic.

Examples. Let \mathcal{F} denote a hyperfinite II_1-factor and $\mathcal{A} = L^\infty(0,1)$. Let $\mathcal{M}_0 = \mathcal{F} \otimes \mathcal{A}$. For $0 < \alpha < 1$, we choose a projection $f \in \mathcal{F}$ with $\tau(f) = \alpha$, where τ is the canonical trace of \mathcal{F}. It is then known that there exists an isomorphism θ_α of \mathcal{F} onto $f \mathcal{F} f$. Let θ be an ergodic automorphism of \mathcal{A} with invariant faithful normal state μ. Let $\theta_0 = \theta_1 \otimes \theta$ and $\phi_0 = \tau \otimes \mu$. Then the triplet $\{\mathcal{M}_0, \theta, \phi_0\}$ satisfies all our requirements, since the automorphism $\text{id} \otimes \theta^n$, $n = 0 \pm 1, \pm 2, \ldots$, are admissible and ergodic on the center $\mathcal{Z}_0 = 1 \otimes \mathcal{A}$. Thus, if we choose various kinds of ergodic automorphisms θ, then we get different kinds of modular groups $\hat{\sigma}$, as well as different factors.

References