BOUNDARY VALUES IN CHROMATIC GRAPH THEORY

BY MICHAEL O. ALBERTSON AND HERBERT S. WILF

Communicated by Olga Taussky Todd, October 23, 1972

Let G be a planar graph drawn in the plane so that its outer boundary Γ is a k-cycle. A four-coloring of Γ is admissible if it extends to a four-coloring of all of G. Let ψ be the number of admissible boundary colorings, and we suppose the truth of the Four-Color Conjecture in the theorems marked with a * below.

CONJECTURE. $\psi \geq 3 \cdot 2^k$ ($k = 3, 4, \ldots$). (The sign of equality holds if G is a triangulation of a k-cycle with no interior vertices.)

THEOREM 1. $\psi \geq 24F_{k-1} \geq C((1 + 5^{1/2})/2)^k$, where F_k is the kth Fibonacci number.

THEOREM 2. $\psi \geq 3 \cdot 2^k$ for $k = 3, 4, 5, 6$.

A graph is totally reducible (t.r.) if every four-coloring of the boundary is admissible (i.e., $\psi = 3^k + (-1)^k \cdot 3$).

THEOREM 3. For each k there is a t.r. graph G whose boundary is a k-cycle and whose interior is a triangulation.

An annulus G_{kl} is an l-cycle drawn interior to a k-cycle, with a maximum number of nonintersecting edges connecting the two cycles. The vertices of the l-cycle are u_1, u_2, \ldots, u_l, and $\rho(u)$ is the valence of the vertex u.

THEOREM 4. An annulus G_{kl} is t.r. iff it has none of the following properties:
1. $\rho(u_i) \geq 6$; 2. $\rho(u_i) = \rho(u_j) = 5$ ($i \leq k - 3$) and $\rho(u_i) = 4$ for all i in $1 < i < j$; 3. $\rho(u_i) = \rho(u_j) = 5$, $\rho(u_i) = 4$ for all i in $1 < i < j$, $j = k - 2$, k even; 4. $\rho(u_i) = 5$, $\rho(u_j) = 4$ for all $1 < i < l$, l odd.

THEOREM 5. An annulus G_{kl} satisfies the Conjecture stated above.

Proofs will appear elsewhere.

REFERENCES

DEPARTMENT OF MATHEMATICS, SWARTHMORE COLLEGE, SWARTHMORE, PENNSYLVANIA 19081

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19104

1 Research supported in part by the National Science Foundation.