1. Introduction. The irreducible modular representations of the finite Chevalley groups (and their twisted analogues) have been described by C. W. Curtis and R. Steinberg (see [1], [2], [8]). In this note we outline some parallel results on principal indecomposable modules (PIM's), for which proofs will appear elsewhere. The groups $\text{SL}(2, q)$ are already treated in detail in [5], based in part on the method of A.V. Jeyakumar [6].

K denotes an algebraically closed field of prime characteristic p, over which all modules are assumed to be finite dimensional. Our notation resembles that of [4], [5]: G is a simply connected algebraic group (of simple type), \mathfrak{g} its Lie algebra, \mathcal{U} the restricted universal enveloping algebra of \mathfrak{g}, G_q the group of rational points of G over a field of q elements, \mathcal{R}_q the group algebra of G_q over K. (When $q = p$, we write simply G, \mathcal{R}.)

Example. $G = \text{SL}(2, K), \mathfrak{g} = \mathfrak{sl}(2, K), G_q = \text{SL}(2, q)$.

The set Λ of restricted highest weights (determined by integers between 0 and $p - 1$) indexes the (classes of) irreducible modules M_{λ} for \mathfrak{g} (or \mathcal{R}). If $\lambda = \lambda_0 + \lambda_1 p + \cdots + \lambda_t p^t (\lambda_i \in \Lambda)$, then the twisted tensor product modules $M_{\lambda} = M_{\lambda_0} \otimes M_{\lambda_1}^{(p)} \otimes \cdots \otimes M_{\lambda_t}^{(p^t)}$ exhaust the (classes of) irreducible modules for $\mathcal{R}_q (q = p^{k+1})$ and for G (as k runs over all nonnegative integers). Denote by $U_\lambda, R_\lambda, R_\mathcal{R}$ the respective PIM of $\mathfrak{g}, R, \mathcal{R}$ having top composition factor $M_{\lambda_0}, M_{\lambda_1}, M_{\lambda}$.

The only irreducible module which is also projective is the Steinberg module $M_{\sigma} = U_\sigma = R_\sigma, \sigma = (p - 1)\delta, \delta = \text{half-sum of positive roots}$. A similar statement is true for $M_{\sigma} = R_\sigma (\sigma = \sigma + \sigma p + \cdots + \sigma p^t)$.

2. Projective modules.

Lemma. Let V, W be modules for the restricted universal enveloping algebra of a restricted Lie algebra, with W projective. Then $V \otimes W$ is also projective.

This is proved in [7]. The analogous statement for the group algebra of a finite group is well known [3, Exercise 2, p. 426].

We apply the lemma as follows. For $\mu \in \Lambda$, define $T_\mu = M_{\mu} \otimes M_{\sigma}$ (σ as above). This is a module for $G, \mathcal{R}, \mathcal{U}$, and is projective for \mathcal{R}, \mathcal{U} (since M_{σ} is). In particular, T_σ is the direct sum of certain \mathcal{U}-modules U_λ.\[\text{AMS (MOS) subject classifications (1970). Primary 20C20; Secondary 20G40, 17B10.}

Key words and phrases. Chevalley group, projective module, principal indecomposable module, modular representation theory, Cartan invariants, classical Lie algebra.

\[1\] Research supported in part by NSF Grant GP 28536.
If \(\mu \in \Lambda \), define its opposite \(\mu^0 \) to be \(\tau_0(\mu + \delta) - \delta, \tau_0 \) the unique element of the Weyl group which interchanges positive and negative roots. Our main result can now be formulated.

Theorem A. Set \(\lambda = (\mu - \delta)^0 \). Then \(U_\lambda \) occurs precisely once as a \(\mathcal{U} \)-summand of \(T_\mu \) and is stable under \(G \), therefore is also a projective \(\mathcal{R} \)-module involving \(R_\lambda \) as a summand. In particular, \(\dim R_\lambda \leq \dim U_\lambda \).

The proof uses some ideas from [4]. For \(G = \text{SL}(2, K) \), a result of this type was first noticed empirically by the second author.

Remarks.

1. One can effectively compute (at least for small rank and small \(p \)) the modules \(T_\mu \), starting with the known decomposition of tensor products of irreducible modules in characteristic 0 and then reducing modulo \(p \). Using this approach and other data, the first author computed the Cartan invariants of \(\text{SL}(3, 5) \), avoiding Brauer's method.

2. From the tensor product construction (and knowledge of the modules \(M_\mu \)) one also gets an effective, but lengthy, algorithm for computing the "decomposition" numbers \(d_{\lambda\mu} \) which figure in [4]. This in turn yields the Cartan invariants of \(\mathcal{U} \).

Call \(\lambda \in \Lambda \) regular if \(\lambda = \sum m_i \lambda_i \) with all \(m_i \) nonzero (\(\lambda_i \in \Lambda \) fundamental dominant weights). Empirical evidence, along with some heuristic arguments, suggests the following conjecture, which is true in rank 1 ([5], [6]) and also for \(G = \text{SL}(3, 5), \text{SL}(3, 3), \text{Spin}(5, 3) \).

Conjecture. As \(\mathcal{R} \)-modules, \(U_\lambda = R_\lambda \) if and only if \(\lambda \) is regular.

For the groups \(G_q \), one obtains (as in [5], [6]):

Theorem B. If \(\lambda = \lambda_0 + \lambda_1 p + \cdots + \lambda_k p^k \), define \(U_k = U_{\lambda_0} \otimes U_{\lambda_1} \otimes \cdots \otimes U_{\lambda_k} \) (as module for \(G \)). Then \(U_k \) is a projective \(\mathcal{R}_q \)-module (\(q = p_k + 1 \)), with \(R_\lambda \) as a direct summand.

References

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY, INDIA