WEAKLY CONTINUOUS ACCRETIVE OPERATORS

BY W. E. FITZGIBBON
Communicated by Fred Brauer, September 28, 1972

We shall be concerned with the autonomous differential equation

\[u'(t) + Au(t) = 0, \quad u(0) = x, \]

where \(A \) is a weakly continuous possibly nonlinear operator mapping a reflexive Banach space \(X \) to itself. Recently S. Chow and J. D. Schuur [2] have considered existence theory for ordinary differential equations involving weakly continuous operators on separable, reflexive Banach spaces.

We now make clear our notion of strong solutions to (1.1).

Definition 1.2. A function \(u : [0, T) \rightarrow X \) is said to be a strong solution to the Cauchy problem

\[u'(t) + Au(t) = 0, \quad u(0) = x, \]

provided that \(u \) is Lipschitz continuous on each compact subset of \([0, T), u(0) = x, \ u \) is strongly differentiable almost everywhere and \(u'(t) + Au(t) = 0 \) for a.e. \(t \in [0, T). \)

By employing a variant of the Peano method we provide local solution to (1.1).

Lemma 1.3. Let \(X \) be a reflexive Banach space and suppose that \(A \) is a weakly continuous operator with \(D(A) = X \). Then there is a finite interval \([0, T)\) such that the Cauchy problem (1.1) has a strong solution on \([0, T). \)

Definition 1.4. An operator \(A \) is said to be accretive provided that

\[\|x + \lambda Ax - (y + \lambda Ay)\| \geq \|x - y\| \]

for all \(\lambda \geq 0 \) and \(x, y \in D(A) \). T. Kato [5] has shown that this definition is equivalent to the statement that \(\text{Re}(Ax - Ay, f) \geq 0 \) for some \(f \in F(x - y) \) where \(F \) is the duality map from \(X \) to \(X^* \).

If we require that the operator \(A \) be accretive we are able to extend the local solution of Lemma 1.3 to a global solution.

Theorem 1.5. Let \(X \) be a reflexive Banach space and suppose that \(A \) is a weakly continuous accretive operator with \(D(A) = X \). Then the Cauchy problem (1.1) has a unique strong global solution on \([0, \infty). \)

AMS (MOS) subject classifications (1970). Primary 47H15, 34H05; Secondary 47B44, 47D05.

Key words and phrases. Accretive, weakly continuous, semigroup of nonexpansive nonlinear operators.

Copyright © American Mathematical Society 1973
If we set \(u(t) = T(t)x \) we obtain a semigroup of nonlinear nonexpansive operators \(\{ T(t) : t \geq 0 \} \) which map \(X \) to \(X \). We can say that \(\{ T(t) : t \geq 0 \} \) is the semigroup associated with \(A \). The next theorem provides an exponential representation for \(\{ T(t) : t \geq 0 \} \).

THEOREM 1.6. Let \(A \) and \(X \) satisfy the conditions of Theorem 1.5. Then the operator \(A \) is \(m \)-accretive, i.e., \(R(I + \lambda A) = X \) for all \(\lambda \geq 0 \). If \(\{ T(t) : t \geq 0 \} \) is a semigroup associated with \(A \) then \(T(t) \) may be represented as the pointwise limit

\[
T(t)x = \lim_{n \to \infty} (I + t/nA)^n x.
\]

Moreover, for each fixed \(t_0 > 0 \), the operator \(T(t_0) \) is weakly continuous.

The \(m \)-accretiveness of \(A \) is obtained by considering the equation

\[
u'(t) + A'\nu(t) = 0
\]

where \(A' = A + I \). Once the \(m \)-accretiveness of \(A \) has been established the exponential representation of \(\{ T(t) : t \geq 0 \} \) follows immediately from a theorem of M. Crandall and T. Liggett [1]. The fact that \(T(t_0) \) is weakly continuous is obtained by showing that \((I + \lambda A)^{-1} \) is weakly continuous for all \(\lambda \geq 0 \) and employing estimates of Crandall and Liggett. The foregoing results may be applied to the rest point theory developed by C. Yen [10].

REFERENCES