Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Weakly continuous accretive operators


Author: W. E. Fitzgibbon
Journal: Bull. Amer. Math. Soc. 79 (1973), 473-474
MSC (1970): Primary 47H15, 34H05; Secondary 47B44, 47D05
DOI: https://doi.org/10.1090/S0002-9904-1973-13224-0
MathSciNet review: 0313903
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Crandall and T. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 287357
  • 2. S. Chow and J. D. Schuur, An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018-1020. MR 287127
  • 3. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664. MR 89373
  • 4. T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, R.I., 1970, pp. 138-161. MR 42 #6663. MR 271782
  • 5. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. MR 37 # 1820. MR 226230
  • 6. R. H. Martin, Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc 26 (1970), 307-314. MR 41 #8791. MR 264195
  • 7. J. W. Neuberger, An exponential formula for one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan 18 (1966), 154-157. MR 34 #622. MR 200734
  • 8. S. Ôharu, Note on the representation of semi-groups of non-linear operators, Proc. Japan Acad. 42 (1966), 1149-1154. MR 36 #3167. MR 220100
  • 9. G. F. Webb, Continuous perturbations of linear accretive operators in Banach spaces, J. Functional Analysis (to appear). MR 361965
  • 10. C. Yen, The convergence, periodicity and rest point behaviour of orbits in nonlinear semigroups of contractions, Thesis, Vanderbilt University, Nashville, Tenn., 1971.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 47H15, 34H05, 47B44, 47D05

Retrieve articles in all journals with MSC (1970): 47H15, 34H05, 47B44, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1973-13224-0

American Mathematical Society