A COMPLETE BOOLEAN ALGEBRA OF SUBSPACES WHICH IS NOT REFLEXIVE

BY JOHN B. CONWAY

Communicated by Paul R. Halmos, December 27, 1972

This note provides a negative answer to a question raised by P. R. Halmos [2, Problem 9]. For the convenience of the reader, the terminology necessary to understand the question is presented here. Let \mathcal{L} be a lattice of subspaces of a Hilbert space \mathcal{H} and let $\text{Alg}\, \mathcal{L}$ be the algebra of all bounded operators in $\mathcal{B}(\mathcal{H})$ that leave each subspace in \mathcal{L} invariant. If $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$, let $\text{Lat}\, \mathcal{A}$ be the lattice of all subspaces of \mathcal{H} that are left invariant by each operator in \mathcal{A}. A lattice \mathcal{L} is reflexive if $\text{Lat}\, \text{Alg}\, \mathcal{L} = \mathcal{L}$. If \mathcal{L} is a reflexive lattice and $\{P_i\}$ is a net of orthogonal projections such that $P_i(\mathcal{H}) \in \mathcal{L}$ for each i and $P_i \to P$ in the strong operator topology then $P(\mathcal{H}) \in \mathcal{L}$; in other words, \mathcal{L} is strongly closed. It is true that a strongly closed lattice of subspaces is a complete lattice, but the converse is false.

A Boolean algebra of subspaces is a distributive lattice \mathcal{L} such that for each M in \mathcal{L} there is a unique M' in \mathcal{L} such that $M \cap M' = (0)$ and $M \vee M' \equiv (M + M')^\perp = \mathcal{H}$. (Note that it is only required that \mathcal{H} be the closure of $M + M'$.) Problem 9 of [2] asks: Is every complete Boolean algebra of subspaces reflexive? The answer is no, and this is shown in this paper by giving a complete Boolean algebra of subspaces which is not strongly closed. In one sense this answer seems unsatisfactory because a new question arises: Is every strongly closed Boolean algebra of subspaces reflexive? In another sense the answer is satisfying because the original question was the proper one to ask. The property of completeness is a lattice theoretic one, while the property of being strongly closed is not.

For the remaining terminology the reader is referred to [4] and other standard references. If $X = [0, 2\pi]$, let μ be a positive singular measure on the collection \mathcal{A} of Borel subsets of X. For A in \mathcal{A} define

$$\varphi_A(z) = \exp \left(-\int_A \frac{e^{i\theta} + z}{e^{i\theta} - z} \, d\mu(\theta) \right), \quad |z| < 1,$$

and put $\varphi = \varphi_X$. Each φ_A is an inner function, and φ_A is a divisor of φ_B if and only if $A \subset B$. $\mathcal{H} = H^2 \ominus \varphi H^2$ and, for each A in \mathcal{A}, $M_A = \varphi_A H^2 \ominus \varphi H^2$.

A COMPLETE BOOLEAN ALGEBRA OF SUBSPACES 721

(1) \[M_A \cap M_B = M_{A \cup B}. \]

In fact, \(\varphi_A H^2 \cap \varphi_B H^2 = \psi H^2 \) where \(\psi \) is the least common multiple of \(\varphi_A \) and \(\varphi_B \). It is easy to check that \(\psi = \varphi_{A \cup B} \) and from this it follows that (1) holds. Similarly

(2) \[M_A \vee M_B = M_{A \cap B}. \]

It follows from (1) and (2) that \(\mathcal{L} = \{M_A : A \in \mathcal{A}\} \) is a distributive lattice; and, with \(M'_A = M_{X - A} \), \(\mathcal{L} \) is a Boolean algebra of subspaces of \(\mathcal{H} \).

Lemma. \(\mathcal{L} = \{M_A : A \in \mathcal{A}\} \) is a complete Boolean algebra.

Proof. It suffices to show that if \(\mathcal{B} \subset \mathcal{A} \) then there is an \(A \) in \(\mathcal{A} \) with \(M_A = \bigcap \{M_B : B \in \mathcal{B}\} \). Because of (1), \(\mathcal{B} \) may be assumed to be closed under finite unions. If \(\beta = \sup \{\mu(B) : B \in \mathcal{B}\} \) then there is an increasing sequence \(\{B_n\} \) in \(\mathcal{B} \) such that \(\beta = \lim_n \mu(B_n) \). If \(A = \bigcup \{B_n : n \geq 1\} \) then \(\mu(A) = \beta \) and \(\mu(B - A) = 0 \) for every \(B \) in \(\mathcal{B} \). It is claimed that \(\varphi_A = \text{l.c.m.} \{\varphi_B : B \in \mathcal{B}\} \). In fact, if \(B \in \mathcal{B} \) then \(\varphi_A = \varphi_{A - B} \varphi_B \) since \(\mu(B - A) = 0 \). Also, if \(\psi \) is an inner function that is a multiple of \(\varphi_B \) for each \(B \) in \(\mathcal{B} \) then, for every integer \(n \), \(\psi = \varphi_{B_n} \psi_n \) for some inner function \(\psi_n \). But \(\varphi_{B_n}(z) \to \varphi_A(z) \) for every \(z \) so it follows that \(\psi_n(z) \to \psi(z) \) for some inner function \(\psi \). Hence \(\psi = \varphi_A \psi \) and \(\varphi_A = \text{l.c.m.} \{\varphi_B : B \in \mathcal{B}\} \). Consequently,

\[M_A = \bigcap \{M_B : B \in \mathcal{B}\}. \]

Theorem. \(\mathcal{L} = \{M_A : A \in \mathcal{A}\} \) is reflexive if and only if \(\mu \) is a purely atomic measure.

Proof. If \(\mu \) is purely atomic then \(\mathcal{L} \) is an atomic Boolean algebra and hence is reflexive [3]. To prove the converse, two additional results are needed. The first of these can be found in [5] although the proof contains an error (which can be rectified). However, in the case under consideration (where \(L^1(\mu) \) is separable) the proof is valid. (Also see [1].)

Theorem A. Let \((X, \mathcal{A}, \mu) \) be a decomposable nonatomic measure space and let \(f \in L^\infty(X, \mathcal{A}, \mu) \) such that \(0 \leq f \leq 1 \). Then there is a sequence \(\{A_n\} \) in \(\mathcal{A} \) such that \(\chi_{A_n} \to f \) in the weak-star topology of \(L^\infty \).

Theorem B. For each inner function \(q \) let \(E_q \) be the orthogonal projection of \(H^2 \) onto \(qH^2 \). If \(q, q_1, q_2, \ldots \) are inner functions such that \(q(z) = \lim_n q_n(z) \) for \(|z| < 1 \) then \(E_{q_n} \to E_q \) strongly.

Proof. If \(z^n \) is the function that assumes the value \(a_m \) at \(a \) then it is easily verified that
\[E_q(z^m) = q \sum_{k=0}^{m} \frac{1}{k!} q^{(k)}(0) z^{m-k}. \]

It follows that \(E_q(z^m)(a) = \lim_n E_{q_n}(z^m)(a) \) for \(|a| < 1\). This gives that \(E_{q_n}(z^m) \to E_q(z^m) \) weakly in \(H^2 \). Since polynomials are dense in \(H^2 \), \(E_{q_n} \to E_q \) in the weak operator topology. But for projections weak convergence is equivalent to strong convergence, and the proof is complete.

Suppose \(\mu \) is not purely atomic; the proof of the main theorem will be completed by showing that \(L \) is not strongly closed. There is a set \(A \) in \(\mathcal{A} \) that contains no atoms for \(\mu \) and with \(\mu(A) > 0 \). Let \(f \) be any Borel function such that \(0 \leq f \leq 1 \), \(f(x) = 0 \) for \(x \) in \(X - A \), and \(0 < f(x) < 1 \) on a set of positive measure. According to Theorem A there is a sequence \(\{A_n\} \) in \(\mathcal{A} \) such that \(A_n \subset A \) and \(\chi_{A_n} \to f \) in the weak-star topology of \(L^\infty(\mu) \). For each \(z, |z| < 1 \),

\[\varphi_{A_n}(z) \to \psi(z) = \exp \left(- \int \frac{e^{i\theta} + z}{e^{i\theta} - z} f(\theta) \, d\mu(\theta) \right). \]

Theorem B implies that \(E_{\varphi_{A_n}} \to E_\psi \) strongly; so \(E_{\varphi_{A_n}} - E_\varphi \to E_\psi - E_\varphi \) strongly. It is straightforward to show that if \(P_A \) is the projection of \(\mathcal{H} \) onto \(M_A \), then \(P_{A_n} \to P_\psi \), where \(P_\psi \) is the projection of \(\mathcal{H} \) onto \(\psi H^2 \ominus \varphi H^2 \).

Since \(\psi H^2 \ominus \varphi H^2 \neq M_A \) for any \(A \), the proof is complete.

Finally, it should be pointed out that \(L \) is isomorphic to the reflexive Boolean algebra \(\text{Lat} T \), where \(T \) is multiplication by the independent variable on \(L^2(X, \mu) \).

REFERENCES

Department of Mathematics, Indiana University, Bloomington, Indiana 47401