THE HOMEOMORPHISM PROBLEM FOR S^3

BY JOAN S. BIRMAN1 AND HUGH M. HILDEN2

Communicated by William Browder, January 22, 1973

1. Introduction. Let M be a closed, orientable 3-manifold which is defined by a Heegaard splitting of genus g. Each such Heegaard splitting may be associated with a self-homeomorphism of a closed, orientable surface of genus g (the surface homeomorphism is used to define a pasting map) and it will be assumed that this surface homeomorphism is given as a product of standard twist maps [3] on the surface. We assert:

THEOREM 1. If M is defined by a Heegaard splitting of genus ≤ 2, then an effective algorithm exists to decide whether M is topologically equivalent to the 3-sphere S^3. This algorithm also applies to a proper subset of all Heegaard splittings of genus > 2.

This result is of interest because it had not been known whether such an algorithm was possible for $g \geq 2$, and also because the algorithm has a possible application in testing candidates for a counterexample to the Poincaré conjecture.

In this note we will describe the algorithm, and sketch a brief proof. Related results about the connections between representations of 3-manifolds as Heegaard splittings, and as branched coverings of S^3, are summarized at the end of this paper. A detailed report will appear in another journal.

2. The algorithm. Let X_g be a handlebody of genus $g \geq 0$ which is imbedded in Euclidean 3-space as illustrated in Figure 1. Let X'_g be a

![Figure 1. The Handlebody X_g](image)

1 The work of the first author has been supported in part by NSF grant #GP-34324X.

2 The work of the second author has been supported in part by NSF grant #GP-34059.
second handlebody, which is so related to X_g that a translation τ parallel
to the x-axis maps X_g onto X'_g. Let Φ be a homeomorphism of $\partial X_g \to \partial X'_g$.
Let $M = X_g \cup \Phi X'_g$ be the 3-manifold which is obtained by identifying
the boundaries of X_g and X'_g according to the rule $\tau \Phi(z) = z$, $z \in \partial X_g$.
Every closed 3-manifold M admits such a representation.

Let c be a simple closed curve on ∂X_g, and let γ_c be a twist about c (see
[3], [4]). It was proved in [4] that if $g > 0$, then every homeomorphism
of $\partial X_g \to \partial X_g$ is isotopic to a product of twists γ_{c_i} about the curves $c_i,
1 \leq i \leq 3g - 1$, in Figure 1.\(^3\) We will make the assumption that our
homeomorphism Φ is given as a product of the particular twists $\gamma_{c_1}, \ldots ,
\gamma_{c_{2g+1}}$. This involves no loss in generality if $g \leq 2$, but if $g > 2$ the class
of maps Φ which can be so represented is somewhat restricted. We are now
ready to state the algorithm for deciding whether $M = X_g \cup \Phi X'_g$ is
homeomorphic to S^3.

Step 1. Given the homeomorphism

$$\Phi = \gamma_{c_{\mu_1}}^{\varepsilon_1} \cdots \gamma_{c_{\mu_r}}^{\varepsilon_r}$$

where each $\varepsilon_i = \pm 1$, and each μ_i is between 1 and $2g + 1$, construct a
diagram of the $(2g + 2)$-string braid

$$\beta = \sigma_{\mu_1}^{\varepsilon_1} \cdots \sigma_{\mu_r}^{\varepsilon_r}$$

where σ_i is a standard generator of the braid group (see [1]). The braid σ_i
is illustrated in Figure 2.

![Figure 2. The Braid σ_i](image)

Step 2. Using the braid β, construct a link L, given in projection, by
joining the ends of the braid β in pairs according to the rule illustrated in
Figure 3. The top of string $2i + 1$ is connected to the top of string $2i + 2$, for
$i = 0, \ldots, g$; the bottom of string $2i + 1$ is connected to the bottom
of string $2i + 2$ for each $i = 0, \ldots, g$. The resulting link is said to be
displayed as a "plat".

\(^3\) If $g = 0$ every homeomorphism Φ is isotopic to the identity map, the set \{c\} is empty,
and $M \sim S^3$. If $g = 1$, the twist maps γ_{c_1} and γ_{c_2} are isotopic, hence only two twist maps
γ_{c_1} and γ_{c_2} are needed.
Step 3. Verify (by checking the projection) whether the plat L has multiplicity 1. This is a necessary condition for $M \sim S^3$. If so, apply the algorithm given by Haken in [2], or by Schubert in [5], to decide whether L is the trivial knot. We assert that $M \sim S^3$ if and only if L is the trivial knot.

3. Sketch of proof. We can assume without loss in generality that the embedding of X_g and X'_g in 3-space \mathbb{E}^3 is chosen in such a way that both X_g and X'_g are invariant under a rotation Ω of 180° about the x-axis. There is also no loss in generality in assuming that the twist maps $\gamma_{c_1}, \ldots, \gamma_{c_{2g+1}}$ are defined in such a way that each γ_{c_i} commutes with the rotation Ω. Since the translation τ likewise commutes with Ω, it follows that

$$(\tau \Omega) = \Omega (\tau \Omega).$$

Let M/Ω be the orbit space of $M = X_g \cup_\partial X'_g$ under the action of Ω, and let ρ be the natural projection from M to M/Ω. The condition (3) ensures that M/Ω is well defined. The quotient spaces X_g/Ω and X'_g/Ω are each homeomorphic to 3-balls, hence

$$(4) \quad M/\Omega = (X_g/\Omega) \bigcup_{\rho \Phi \rho^{-1}} (X'_g/\Omega)$$

is represented as a genus zero Heegaard splitting, hence M/Ω must be homeomorphic to S^3. Thus the triplet $(\rho, M, M/\Omega)$ exhibits M as a 2-sheeted branched covering of S^3. The branching set is the image under ρ of the fixed point set of Ω, that is of the set $(X_g \cap x$-axis) \cup $(X'_g \cap x$-axis).

To understand the structure of the branching set, observe that the surface homeomorphism $\rho \Phi \rho^{-1}$ which defines the Heegaard splitting of M/Ω is a homeomorphism of $S^2 \to S^2$, and hence it is isotopic to the identity. This isotopy can be used to define a homeomorphism F of $M/\Omega \to M/\Omega$, and it can be shown that the image of the fixed point set of Ω under the product $F \rho$ is precisely the link L described in Steps 1 and 2 of the algorithm.

FIGURE 3. $(2g+2)$-STRING PLAT
Suppose that M is homeomorphic to S^3. Then by a theorem of Waldhausen [7] the fixed point set of Ω must be the trivial knot, hence its image under $F\rho$ must also be trivial. Therefore a necessary condition for $M \sim S^3$ is that L have a single, unknotted component. The algorithm given in [2] and [5] enables us to test whether L is, in fact, trivial. If it is trivial, then M is the 2-fold branched covering of S^3 branched over the trivial knot. But then, $M \sim S^3$, hence the condition is also sufficient.

We remark that if Waldhausen's result [7] could be extended to transformations of period $p > 2$, then our algorithm could be extended to the class of all 3-manifolds which admit representations as p-fold branched cyclic coverings of S^3. It is not known whether this includes all closed 3-manifolds.4

4. Related results. The Heegaard genus of a 3-manifold M is the smallest integer g such that M admits a Heegaard decomposition $X_g \cup_\phi X'_g$. The bridge number b of a link L is the smallest integer n such that L can be exhibited in a b-bridge presentation [6]. The braid number n of a link L is the smallest integer n such that L can be represented as a closed braid with n-strings [1]. (This is not the same as a "plat".)

Corollary 1. Every 3-manifold of Heegaard genus $g \leq 2$ can be exhibited as a 2-fold branched cyclic covering of S^3, branched over a knot or link of bridge number $g + 1$. The two-fold branched cyclic covering of S^3 branched over a knot or link of bridge number b is a 3-manifold of Heegaard genus $\leq b - 1$. (This generalizes a result due to Schubert [6].)

Theorem 2. The p-fold branched cyclic covering of S^3, branched over a knot of braid number n, is a 3-manifold of Heegaard genus $\leq (p - 1)(n - 1)$, for every $p \geq 2$.

References

4 A new result of J. Montisinos establishes that this does not include all closed 3-manifolds. See J. Montisinos, *3-Variétés qui ne sont pas revêtements cycliques ramifiés sur S^3*, (to appear).

DEPARTMENT OF MATHEMATICS, STEVENS INSTITUTE OF TECHNOLOGY, HOBOKEN, NEW JERSEY 07030

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822

Current address (Joan Birman): Department of Mathematics, Columbia University, New York, New York 10027.