We announce here some results of a paper to appear elsewhere [1].

Let a torus T act continuously on a topological space X. Let $X 	o X_T \to B_T$ be the fibre bundle with fibre X associated (by means of the action of T on X) to the universal principal T bundle $T \to E_T \to B_T$. We define the equivariant cohomology ring $H^*_T(X) = H^*(X_T)$ where H^* denotes Čech cohomology with rational coefficients. When Y is an invariant subspace of X, we define $H^*_T(X, Y) = H^*(X_T, Y_T)$. Then $R = H_T^*(B_T)$ is a polynomial ring and $H^*_T(X, Y)$ is a module over R by means of π^*.

For each subtorus L of T let P_L be the kernel of $H^*(B_T) \to H^*(B_L)$. Let $X^L = F(L, X)$ be the set of points fixed by L. We will assume that X is compact. Given a closed invariant subspace $Y \subseteq X$ and an element $x \in H^*_T(Y)$, we define

$$I_x = \{a \in R \mid ax \text{ lies in the image of } H^*_T(X) \to H^*_T(Y)\}, \quad \text{and}$$

$$I^L_x = \{a \in R \mid ax \text{ lies in the image of } H^*_T(X^L \cup Y) \to H^*_T(Y)\}.$$

When $L \subseteq K$ are subtori, $I_x \subseteq I^L_x \subseteq I^K_x$. We say that K belongs to x if K is maximal with respect to the property $I^K_x \neq R$.

1. **Theorem.** The isolated primary components of the ideal I_x are the ideals I^K_x where K belongs to x. The radical of I^K_x is PK, hence $\sqrt{I_x} = \bigcap PK$ where K ranges over the subtori belonging to x.

2. **Corollary.** If I_x is principal, the subtori belonging to x are all of corank 1 and $I_x = \bigcap I^K_x$ where K ranges over the subtori belonging to x. For each such K, $I^K_x = (\omega^d)$ where $d \geq 1$ and $\omega \in H^2(B_T)$ generates PK.

Assume that the fixed point set F of the T action on X is not connected. Let $F = F^1 + \cdots + F^s$ be the connected components of the fixed point set, $s \geq 2$. We say that a subtorus L connects F^1 and F^2 if they lie in the same component of X^L. We assume that $\dim H_T^*(X)$ is finite.

3. **Theorem.** Let $N \subseteq H_T^*(X)$ be the ideal generated by odd degree and R torsion elements. Assume that $H^*_T(X)/N$ is generated by k elements as an R algebra. Then for every maximal subtorus K connecting F^1 and F^2, $\rank K \geq \rank T - k$.

4. Remark. This generalizes a result of Hsiang [3] that F is connected whenever $H^*_R(X)$ is generated as an R algebra by odd degree and R torsion elements.

The following proposition is a technical result related to a theorem of Golber [2].

5. Proposition. Assume that $\dim H^*(X) = \dim H^*(F) < \infty$. Let $S = \{ x \in X \mid \text{rank } T_x \geq \text{rank } T - 1 \}$. Then the homomorphism $H_*(X, F) \to H_*(S, F)$ is injective.

We use the notation $X \sim Y$ to indicate that there is an isomorphism of rational cohomology rings $H^*(X) = H^*(Y)$. When $X \sim S^{k_1} \times \cdots \times S^{k_n}$ where the k_i are odd integers, we define $e(X)$ to be the second symmetric polynomial $\sum_{i<j} (k_i + 1)(k_j + 1)$. If $X \sim S^{d_1} \times \cdots \times S^{d_s}$ where the d_i are odd integers, for every subtorus L of T [3]. Hence $e(X^L)$ is defined. Further we define $g(X) = e(X) - e(F) - \sum_L [e(X^L) - e(F)]$ where L ranges over the corank 1 subtori. For each subtorus H of corank 2, we define $g(X^H)$ by using the induced T/H action on X^H.

6. Proposition. $g(X) = \sum_H g(X^H)$ where H ranges over the corank 2 subtori.

7. Remark. Golber [2] has proved that $g(X) = \sum g(X^H)$ when $X \sim S^{k_1} \times S^{k_2}$ where the k_i are odd, and $F = \emptyset$.

When X is a compact rational cohomology manifold and $F = F^1 + \cdots + F^s$ are the components of the fixed point set, let f_i be a generator of the top dimensional cohomology group of F^i. After including $f_i \in H^*(F^i) \subset H^*(F) \subset H^*(F)$, we can define the ideal I_{f_i}. The following result was conjectured by Hsiang. It is a kind of splitting principle or Schur lemma for torus actions.

8. Theorem. The ideal I_{f_i} is principal with a generator of degree $\dim X - \dim F^i$. This generator splits as a product of linear factors in R corresponding to the subtori belonging to f_i.

Here $n = \dim X$ means that $H^n(X)$ is the top dimensional nonzero cohomology group of X. We do an explicit computation of I_{f_i}, when $X \sim$ quaternionic projective n space [1].

9. Remark. Theorem 8 holds for torus actions on Poincaré duality spaces. It also holds for actions of \mathbb{T}-tori on Poincaré duality spaces over \mathbb{Z}_p. The Borel formula (see [3]) also holds for such actions [5].

Theorem 8 yields the following result of Hsiang and Su [4].

10. Theorem. When X is a compact rational cohomology manifold and $X \sim QP^n$, quaternionic projective n space, and a torus of rank ≥ 2 acts
effectively on X, the fixed point set has at most one component $\sim QP^k$ with $k \geq 1$.

The results announced here also hold for actions of p-tori using \mathbb{Z}_p cohomology.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address (Tor Skjelbred): The Institute for Advanced Study, Princeton, New Jersey 08540