I. Introduction. Let G denote a locally compact abelian (LCA) group and let Γ denote the group which is dual to G. If $1 \leq p \leq \infty$, let $L_p(G)$ (or $L_p(\Gamma)$) denote the space of p-power integrable functions with respect to Haar measure on G (or on Γ); let $C(G)$ denote the algebra of bounded continuous functions on G and let $C_0(G)$ consist of those functions in $C(G)$ which vanish at infinity. In [2] and [3] Figa-Talamanca and Figa-Talamanca and Gaudry studied the p-Fourier algebra

$$A_p(\Gamma) = [L_p(\Gamma) \hat{\otimes} L_p(\Gamma)]/K$$

where $1 \leq p < \infty$, p' is conjugate to p, $\hat{\otimes}$ is the projective tensor product, and K denotes the kernel of the convolution operator $c : L_p \otimes L_{p'} \to C_0(\Gamma)$ by $c(f \otimes g)(y) = f \ast g(y)$. $A_p(\Gamma)$ carries the quotient norm. Herz [7] showed that $A_p(\Gamma)$ is a Banach algebra under pointwise multiplication. In [2] Figa-Talamanca showed that the dual space of $A_p(\Gamma)$ is isometrically isomorphic to the space $M_p(\Gamma)$ of bounded, translation invariant, linear operators on $L_p(\Gamma)$ and that the weak operator topology on $M_p(\Gamma)$ and the weak*-topology agree on bounded sets. Implicit in [2] is the fact that $A_2(\Gamma)$ is isometrically isomorphic with $A(\Gamma)$, the algebra of Fourier transforms of integrable functions on G; $A(\Gamma)$ is equipped with the inherited norm; see also [1]. Hewitt’s factorization theorem is used in [3] to prove that $A_1(\Gamma)$ is $C_0(\Gamma)$ ($C(\Gamma)$ when Γ is compact).

Let $B_p(\Gamma)$ denote the algebra of functions f in $C(\Gamma)$ which satisfy: $f(\gamma)h(\gamma) \in A_p(\Gamma)$ whenever $h \in A_p(\Gamma)$. $B_p(\Gamma)$ is a commutative and semi-simple Banach algebra under pointwise addition and multiplication when it is equipped with the operator norm; $B_p(\Gamma)$ is the algebra of bounded multipliers on $A_p(\Gamma)$. If $1 < p < \infty$ and if p' denotes the index conjugate to p, then $A_{p'} = A_p$ and $B_{p'} = B_p$, so that we may restrict p to $1 < p < 2$. It is easy to see that $B_1(\Gamma) = C(\Gamma)$, and Helson’s theorem [11, p. 73] says that $B_2(\Gamma)$ is the algebra of Fourier transforms of bounded measures on G with the inherited norm. Since the inclusions $A_2(\Gamma) \subset A_p(\Gamma) \subset A_1(\Gamma)$ are continuous if $1 < p < 2$, it follows that the maximal

Key words and phrases. Functions of Gel'fand transforms, multipliers on L_r, p-Fourier algebra, multipliers of Fourier algebras, isomorphisms of Fourier algebras.

1 Research supported in part by NSF grant GP-24574.
ideal space of $A_p(\Gamma)$ can be identified with Γ. Thus $B_p(\Gamma)$ is an algebra of multipliers in the sense of Larsen [9]; we refer to this monograph for the basic facts regarding multiplier algebras.

The purpose of this note is to show that the only complex valued functions of a complex variable which operate on (the Gel'fand transforms of) $B_p(\Gamma)$ are entire functions when Γ is not compact. If Γ is compact, $A_p(\Gamma) = B_p(\Gamma)$ and the class of functions which operates on $B_p(\Gamma)$ is less restrictive. When Γ is not compact, this will imply that the algebra $B_p(\Gamma)$ is not selfadjoint and not regular and that Γ is not dense in the maximal ideal space of $B_p(\Gamma)$. The basic result (Theorem 1, below) from which this information follows can also be used to describe the isometric isomorphisms of $A_p(\Gamma)$ onto $A_p(\Lambda)$ when Λ is a second LCA group. A detailed development of these topics will be given in [5].

II. Functions operating on multipliers. In [6] Hahn proved that if $1 \leq p \leq 2$ and if $f \in L_p(\Gamma)$ and $g \in L_p(\Gamma)$, then $h(y) = f \ast g(y)$ is the Fourier transform of an operator T_h in $M_r(G)$ if $|1/r - 1/2| \leq |1/p - 1|$ for which $\|T_h\|_r \leq \|f\|_p \|g\|_p$. We have the following extension of this result.

Theorem 1. Let $1 \leq p \leq 2$ and let $|1/r - 1/2| \leq |1/p - 1|$. Then f in $B_p(\Gamma)$ is the Fourier transform of an operator T_f in $M_r(G)$ and the map $f \rightarrow T_f$ faithful, norm decreasing representation of $B_p(\Gamma)$ as an algebra of bounded, translation invariant operators on $L_r(G)$.

It is clear that Hahn’s map $h \rightarrow T_h$ extends to a norm decreasing isomorphism of $A_p(\Gamma)$ into $M_r(G)$. Now Hahn’s Lemma 1 and the fact that $A_p(\Gamma)$ has a bounded approximate identity (since $A_2(\Gamma)$ does) can be used to extend $h \rightarrow T_h$ to all of $B_p(\Gamma)$.

The Fourier transforms of bounded measures on G are elements of $B_2(\Gamma)$; denote this subalgebra by $B_2(\Gamma)$.

Theorem 2. Suppose that Γ is noncompact and that $1 < p < 2$. Let F be a complex valued function defined on $[-1, 1]$ for which $F(\mu(\gamma)) \in B_p(\Gamma)$ for every $\mu \in B_2(\Gamma)$ with range in $[-1, 1]$. Then F admits an extension to all of C as an entire function.

This follows from Igari’s Theorem 1 of [8] and from Theorem 1 above. When Γ is compact but not discrete, F must be analytic in a neighborhood of $[-1, 1]$.

Now, by reasoning as in [11, Chapter 6] or as in [8], one may conclude that

Theorem 3. Suppose that Γ is noncompact and that $1 < p < 2$. Then:

1. If F is a complex valued function of a complex variable for which $F(\hat{f})$ is the Gel'fand transform of a function in $B_p(\Gamma)$ whenever \hat{f} is, then F is an entire function.
2. For any complex number \(z \) there is a real valued function \(f \) in \(B_p(\Gamma) \) and a complex homomorphism \(h \) of \(B_p(\Gamma) \) for which \(h(f) = z \).

3. \(B_p(\Gamma) \) is not selfadjoint and not regular.

4. \(\Gamma \) is not dense in the maximal ideal space of \(B_p(\Gamma) \).

5. There is a function \(f \) in \(B_2(\Gamma) \subset B_p(\Gamma) \) with \(f \geq 1 \) on \(\Gamma \) for which \(f^{-1} \) is not in \(B_p(\Gamma) \).

The analogy between \(B_p(\Gamma) \) and \(B_2(\Gamma) \) does not end here, but we shall wait to describe the situation more completely in [5].

III. Isomorphism. Let \(\Gamma \) and \(\Lambda \) be LCA groups and let \(A_p(\Gamma) \) and \(A_p(\Lambda) \) denote their respective \(p \)-Fourier algebras for \(1 < p < 2 \). It follows from Theorem 1 of §II and from a theorem of Strichartz [12] that the only isometric multipliers on \(A_p(\Gamma) \) are complex unit multiples of characters on \(\Gamma \). This is the basic fact needed to prove

Theorem 4. If \(\Phi \) is an isometric isomorphism of \(A_p(\Gamma) \) onto \(A_p(\Lambda) \), then there is a topological isomorphism \(\alpha \) of \(\Lambda \) onto \(\Gamma \) and an element \(\gamma_0 \) of \(\Gamma \) such that \(\Phi(h)(\lambda) = h(\gamma_0 \alpha(\lambda)) \).

Corollary 4.1. \(\Gamma \) is topologically isomorphic to \(\Lambda \) if and only if \(A_p(\Gamma) \) is isometrically isomorphic to \(A_p(\Lambda) \); i.e. \(A_p(\Gamma) \) determines \(\Gamma \).

The proof relies on the facts that \(\Phi \) extends to \(B_p(\Gamma) \), that \(\Phi \) maps isometric multipliers to isometric multipliers, and that \(G \) is topologically isomorphic to the multipliers \(\{g_0(\gamma) \mid g_0 \in G\} \) when this group is equipped with the strong operator topology.

\(A_p(\Gamma) \), \(B_p(\Gamma) \), and \(M_p(\Gamma) \) forms an interrelated system of algebras which we first studied in [4]. There, we proved Theorem 1 of §II in the context of a continuity theorem of Lévy type for \(M_p(G) \). No applications of Theorem 1 were given in [4].

References

