Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

On the arithmetic of tube domains (blowing-up of the point at infinity)


Author: I. Satake
Journal: Bull. Amer. Math. Soc. 79 (1973), 1076-1094
MSC (1970): Primary 32N15, 10E99, 14M20
MathSciNet review: 0330524
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. MR 0216035 (35 #6870)
  • 2. Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 0147566 (26 #5081)
    F. Hirzebruch, The Hilbert modular group, resolution of the singularities at the cusps and related problems, Séminaire Bourbaki, 23ème année (1970/1971), Exp. No. 396, Springer, Berlin, 1971, pp. 275–288. Lecture Notes in Math., Vol. 244. MR 0417187 (54 #5245)
    Friedrich E. P. Hirzebruch, Hilbert modular surfaces, Secrétariat de l’Enseignement Mathématique, Université de Genève, Geneva, 1973. Série des Conférences de l’Union Mathématique Internationale, No. 4; Monographie No. 21 de l’Enseignement Mathématique. MR 0389921 (52 #10750)
  • 4. Jun-ichi Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967), 228–260. MR 0218352 (36 #1439)
  • 5. D. Mumford, et al., Toroidal embeddings, I, Seminar notes at Harvard Univ., 1972.
  • 6. Ichiro Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math. (2) 72 (1960), 555–580. MR 0170356 (30 #594)
  • 8. Carl Ludwig Siegel, Zur Theorie der Modulfunktionen 𝑛-ten Grades, Comm. Pure Appl. Math. 8 (1955), 677–681 (German). MR 0074534 (17,602d)
  • 9. È. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303–358 (Russian). MR 0158414 (28 #1637)
  • 10. H. Yamaguchi, On defining equations of certain projective varieties (to appear).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 32N15, 10E99, 14M20

Retrieve articles in all journals with MSC (1970): 32N15, 10E99, 14M20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1973-13342-7
PII: S 0002-9904(1973)13342-7