IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On the arithmetic of tube domains (blowing-up of the point at infinity)


Author: I. Satake
Journal: Bull. Amer. Math. Soc. 79 (1973), 1076-1094
MSC (1970): Primary 32N15, 10E99, 14M20
DOI: https://doi.org/10.1090/S0002-9904-1973-13342-7
MathSciNet review: 0330524
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. W. L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528. MR 35 #6870. MR 216035
  • 2. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535. MR 26 #5081. MR 147566
    3a. F. Hirzebruch, The Hubert modular group, resolution of the singularities at the cusp and related problems, Sém. Bourbaki, 23-e année, 1970/71, n°396. MR 417187

    3b. F. Hirzebruch, Hilbert modular surfaces. Enseignement Math. (to appear). MR 389921

  • 4. J. -I. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967), 228-260. MR 36 #1439. MR 218352
  • 5. D. Mumford, et al., Toroidal embeddings, I, Seminar notes at Harvard Univ., 1972.
  • 6. I. I. Pjateckiĭ-Shapiro, Geometry of classical domains and automorphic functions, Fizmatgiz, Moscow, 1961; English transl., Automorphic functions and the geometry of classical domains, Math. and its Applications, vol. 8, Gordon and Breach, New York, 1969. MR 25 #231; 40 #5908.
    7a. I. Satake, Compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math. (2) 72 (1960), 555-580. MR 30 #594. MR 170356

    7b. I. Satake, Realization of symmetric domains as Siegel domain of the third kind, Lecture Notes, Univ. of California, 1972.

  • 8. C. L. Siegel, Zur Theorie der Modulfunktionen n-ten Grades, Comm. Pure Appl. Math. 8 (1955), 677-681. MR 17, 602. MR 74534
  • 9. E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303-358 = Trans. Moscow Math. Soc. 1963, 340-403. MR 28 #1637. MR 158414
  • 10. H. Yamaguchi, On defining equations of certain projective varieties (to appear).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 32N15, 10E99, 14M20

Retrieve articles in all journals with MSC (1970): 32N15, 10E99, 14M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1973-13342-7

American Mathematical Society