Introduction. Following Solovay [2], let ‘ZF’ denote the axiomatic set theory of Zermelo-Fraenkel and let ‘ZF + DC’ denote the system obtained by adjoining a weakened form of the axiom of choice, DC, (see p. 52 of [2] for a formal statement of DC). From DC a ‘countable’ form of the axiom of choice is obtainable. More precisely, if \(\{B_n : n \in \mathbb{N}\} \) is a countable collection of nonempty sets then it follows from DC that there exists a function \(f \) with domain \(\mathbb{N} \) such that \(f(n) \in B_n \) for each \(n \).

The system ZF + DC is important because all the positive results of elementary measure theory and most of the basic results of elementary functional analysis, except for the Hahn-Banach theorem and other such consequences of the axiom of choice, are provable in ZF + DC. In particular, the Baire category theorem for complete metric spaces and the closed graph theorem for operators between Fréchet spaces are provable in ZF + DC.

Solovay shows [2] that the proposition, *Each subset of the real numbers is Lebesgue measurable*, cannot be disproved in ZF + DC. He does this by constructing a model for ZF + DC in which the proposition becomes a true statement.

We shall see that the proposition, *Each linear operator on a Hilbert space is a bounded linear operator*, is consistent with the axioms of ZF + DC. Other results of this type are obtained. For example, *Whenever \(X \) and \(Y \) are separable Fréchet groups and \(h: X \to Y \) is a homomorphism then \(h \) is continuous*, cannot be proved or disproved in ZF + DC.

Fortunately all the hard work in model theory has been done by Solovay. All that we use here is straightforward functional analysis.

All operators on a Hilbert space are bounded. We recall that a subset \(S \) of a topological space \(T \) is said to have the Baire property if there exists an open set \(U \) such that \((U \setminus S) \cup (S \setminus U) \) is meagre. Let BP be the proposition: *Each subset of a complete separable metric space has the Baire property*. In [2, §4], Solovay outlines an argument which shows that when BP is interpreted in his model for ZF + DC then it becomes a true statement. Hence BP is consistent with the axioms of ZF + DC provided Solovay’s model exists. We adjoin BP as an axiom and denote the extended system by ‘ZF + DC + BP’.

In this paper certain propositions will be shown to be theorems of ZF + DC + BP. It is easy to show, by a Hamel base argument, that for each such proposition its negation is a theorem in ZFC (ZF with the axiom of choice adjoined). So these propositions can neither be proved nor disproved in ZF + DC, provided Solovay's model exists.

Let I be the axiom: There exists an inaccessible cardinal. Solovay uses the hypothesis that there exists a (transitive) model for ZFC + I when constructing his model.

From now onward we work in ZF + DC + BP. All our theorems are derived in this system.

Lemma 1. Let X and Y be separable metric spaces and let X be complete. Let $f : X \to Y$ be any function mapping X into Y. Then there exists a meagre set $N \subseteq X$ such that the restriction of f to $X \setminus N$ is continuous.

Choose $\varepsilon > 0$. Let $\{y_r : r = 1, 2, \ldots\}$ be a countable dense subset of Y. For each r, let S_r be the open sphere centred on y_r with radius $\varepsilon/2$. Then $Y = \bigcup_1^\infty S_r$.

Let $A_1 = S_1$ and, for $n \geq 1$, let $A_{n+1} = (\bigcup_1^{n+1} S_r) - (\bigcup_1^n S_r)$. So $Y = \bigcup_1^\infty A_n$, where each A_n is contained in an open sphere of radius $\varepsilon/2$ and $A_i \cap A_j = \emptyset$ for $i \neq j$.

Let $B_n = f^{-1}[A_n]$ for $n = 1, 2, \ldots$. Then $X = \bigcup_1^\infty B_n$ and $B_i \cap B_j = \emptyset$ for $i \neq j$.

For any n, B_n has the Baire property and so there is an open set U_n and a meagre set M_n, where $U_n = (B_n \setminus U_n) \cup (U_n \setminus B_n)$, such that $U_n \cap (X \setminus M_n) = B_n \cap (X \setminus M_n)$. Let M be the meagre set $\bigcup_1^\infty M_n$. Then $U_n \cap (X \setminus M) = B_n \cap (X \setminus M)$ for each n. Thus $B_n \cap (X \setminus M)$ is an open subset of $X \setminus M$ in the relative topology of $X \setminus M$.

Let J be the set of all natural numbers n for which $B_n \cap (X \setminus M)$ is not empty. By DC there exists a function ξ with domain J such that $\xi(n) \in B_n \cap (X \setminus M)$ for each n. Let h be the function defined on $X \setminus M$ by $h(x) = f(\xi(n))$ whenever $x \in B_n \cap (X \setminus M)$.

Let $(z_j) (j = 1, 2, \ldots)$ be any sequence in $X \setminus M$ which converges to a point z in $X \setminus M$. Then, for some $n \in J$, $B_n \cap (X \setminus M)$ is an open neighbourhood of z in the relative topology of $X \setminus M$. So there exists a natural number k such that $z_j \in B_n \cap (X \setminus M)$ whenever $j \geq k$. Thus $h(z_j) = h(z)$ whenever $j \geq k$. So $h : (X \setminus M) \to Y$ is continuous. Whenever $x \in X \setminus M$ then $x \in B_n \cap (X \setminus M)$ for some $n \in J$ and thus

$$d(h(x), f(x)) = d(f(\xi(n)), f(x)) < \varepsilon.$$

By putting $\varepsilon = 1/m (m = 1, 2, \ldots)$ we can find a sequence of functions $(h_m) (m = 1, 2, \ldots)$ and a sequence of meagre sets $(N_m) (m = 1, 2, \ldots)$ such that h_m is a continuous map of $X \setminus N_m$ into Y and $d(h_m(x), f(x)) < 1/m$.

for each $x \in X \setminus N$. Let N be the meagre set $\bigcup_{m=1}^{\infty} N_m$. Then $(h_m)(m = 1, 2, \ldots)$ converges uniformly to f on $X \setminus N$. So f is continuous on $X \setminus N$.

Theorem 2. Let X and Y be separable metrizable topological groups and let X be complete. Let $H : X \to Y$ be any group homomorphism. Then H is continuous.

Let $(x_n) (n = 1, 2, \ldots)$ be a sequence in X converging to a point x. By Lemma 1, there is a meagre set M such that H is continuous when restricted to $X \setminus M$.

By the Baire category theorem, which is valid in ZF + DC, there exists $z \in X$ such that z is not in the meagre set $x^{-1}M \cup \bigcup_{n=1}^{\infty} (x_n^{-1}M)$. Thus $xz \in X \setminus M$ and $x_nz \in X \setminus M$ for each n. Hence $H(xz) = \lim H(x_nz)$. Since H is a homomorphism, $H(z) = \lim H(x_n)$.

The elegant argument used in Theorem 2 is due to Banach, see Theorem 4, Chapter 1 [1]. I wish to thank Professor A. Wilansky for drawing my attention to this reference.

In the following we do not require Fréchet spaces to be locally convex.

Theorem 3. Let X be any Fréchet space and let Y be a separable metrizable topological vector space. Let $T : X \to Y$ be a linear map. Then T is continuous.

Let $(x_n) (n = 1, 2, \ldots)$ be any sequence in X which converges to zero. Let X_0 be the closed linear span of $\{x_n : n = 1, 2, \ldots\}$ so that X_0 is a separable Fréchet space. Then, by the preceding theorem, the restriction of T to X_0 is continuous. Thus $Tx_n \to 0$ as $n \to \infty$. So T is continuous.

Corollary 4. Each linear functional on a Fréchet space is continuous.

Theorem 5. Let X and Y be Fréchet spaces and let $T : X \to Y$ be a linear map. If there exist enough functionals on Y to separate the points of Y then T is continuous.

Let $(x_n) (n = 1, 2, \ldots)$ be a sequence in X converging to x and suppose $(Tx_n) (n = 1, 2, \ldots)$ converges to y. For any functional ϕ on Y, ϕ is continuous on Y and ϕT is continuous on X. Thus

$$
\phi(y) = \lim \phi(Tx_n) = \lim \phi(T x_n) = \phi(T x).
$$

So $Tx = y$. It now follows by the closed graph theorem that T is continuous.

It must be emphasised that discontinuous linear operators, defined on incomplete spaces, arise naturally in ZF + DC. For example, there is an abundance of unbounded operators defined on dense subspaces of a Hilbert space. But, for linear operators defined on the whole of a Hilbert space the following theorem holds in ZF + DC + BP.
THEOREM 6. Let H be a Hilbert space and let $T:H \to H$ be a linear operator defined on the whole of H. Then T is bounded.

Let H be any Hilbert space. Then, for each nonzero x in H, the linear functional f, defined by $f(y) = \langle y, x \rangle$, does not vanish at x. So H has a separating family of linear functionals.

This implies that, in ZFC, we cannot obtain discontinuous operators on (the whole of) a Hilbert space except by invoking an ‘uncountable’ form of the axiom of choice.

REFERENCES