THE AFFINE STRUCTURES ON THE REAL TWO-TORUS. I

BY T. NAGANO\(^1\) AND K. YAGI

Communicated by S. S. Chern, April 17, 1973

We wish to complete the study of the affine structures on the real affine 2-tori \(T^2\), following N. H. Kuiper \([2]\), J. P. Benzecri \([1]\) and others.

The category of the affine manifolds is defined, as usual, by the manifolds equipped with maximal atlas whose coordinate transformations are affine transformations \(y^i = \sum a^i_j x^j + b^i, a^i_j, b^i \in \mathbb{R}\), in the cartesian space \(\mathbb{R}^n\), and by the maps which are expressed locally with affine transformations in terms of the affine charts.

Our main result asserts that the affine structures on \(T^2\) are completely determined by the holonomy groups, in which, however, the concept of the holonomy group requires a slight modification as follows.

Given an affine manifold \(M\), its universal covering manifold \(\tilde{M}\) with the induced affine structure is immersed equidimensionally into \(\mathbb{R}^n\) by an affine map \(d\). The map \(d\) gives rise to a homomorphism \(\eta: \pi_1(M) \to A(\mathbb{R}^n)\) of the fundamental group into the affine group \(A(\mathbb{R}^n)\) in such a way that \(d\) is \(\pi_1(M)\)-equivariant with respect to the action of \(\pi_1(M)\) on \(\mathbb{R}^n\) through \(\eta\). The image of \(\eta\) is called the holonomy group \(H\) of \(M\), which is unique up to an inner automorphism of \(A(\mathbb{R}^n)\). Here \(A(M)\), in general, denotes the affine automorphism group of the affine manifold \(M\).

When the image \(d\tilde{M}\) is not simply connected, we switch to its universal covering \((d\tilde{M})^\sim\) from \(\mathbb{R}^n\); that is, we construct an affine immersion: \(d^*: \tilde{M} \to (d\tilde{M})^\sim\) which covers \(d\) and a homomorphism \(\eta^*: \pi_1\tilde{M} \to A((d\tilde{M})^\sim)\) accordingly. Now the modified holonomy group \(H^*\) of \(M\) is by definition the image \(\eta^*(\pi_1\tilde{M})\). When \(d\tilde{M}\) is simply connected, we simply put \(H^* = H\). At any rate \(H^*\) can be regarded as a subgroup of the universal covering group \(A(\mathbb{R}^2)^\sim\) of \(A(\mathbb{R}^2)\).

Theorem 1. Two affine structures on \(T^2\) are isomorphic if and only if the modified holonomy groups are conjugate in \(A(\mathbb{R}^2)^\sim\).

The difficulty in the proof lies in establishing that \(d\) is a covering map onto \(d\tilde{M}\). The difficulty may be illustrated by the fact that a surjective immersion of \(\mathbb{R}^2\) onto itself is not always a diffeomorphism. In any case, that \(d\) is a covering implies that \(T^2\) is affine isomorphic with \((d\tilde{M})^\sim/H^*\).

In order to describe the classification of \(H^*\) it is convenient to state the following theorem.

\[^{1}\] Partially supported by NSF GP-29662.
Theorem 2. For any affine torus \(T^2 \), the affine group \(A(T^2) \) admits nonempty open orbits.

In the transitive case, \(H^* \) is characterized as a lattice subgroup \(\cong \mathbb{Z}^2 \) of a maximal connected abelian subgroup \(G^* \cong \mathbb{R}^2 \) of \(A(R^2) \). The projection \(G = \pi(G^*) \) of \(G^* \) in \(A(R^2) \) is listed below. Since \(G^* \) acts on the affine plane \(R^2 \) almost effectively, \(G^* \) has the induced affine structure, and so \(G^*/H^* \) becomes an affine torus naturally. In the intransitive case, the situation is more complicated; the affine 2-torus \(T^2 \) is then partitioned into several, say \(n \), isomorphic open cylinders and their boundaries (which are closed geodesics in one and the same homotopy class \(\alpha \) in \(\pi_1(T^2) \); those cylinders together constitute the open orbit of \(A(T^2) \)). To be more precise, \(T^2 \) has a cylinder \(R \times S^1 \) as an affine (regular) covering space which admits the affine transformations \(\beta(k):(x, y) \rightarrow (x + k, y) \), \(k \in \mathbb{Z} \), and the covering group is generated by \(\beta(n) \). \(H^* \) is contained in a 2-dimensional abelian subgroup \(G^* \) of \(A(R^2) \) which is saturated (viz. \(G^* = \pi^{-1}(\pi(G^*)) \)) with respect to the projection \(\pi:A(R^2) \rightarrow A(R^2) \) and whose image under \(\pi \) has the identity component \(G \) of type (I-1) or (I-2) in the list below. In particular \(\pi(G^*) \) is a linear transformation group having no translation part. \(\pi(G) \) is generated by \(G \) and the reflection, \(-1 \), with respect to the fixed point of \(G \). \(G^* \) is isomorphic with \(\text{Ker} \pi \times \pi(G^*) \cong \mathbb{Z} \times G \). Now \(H^* \) is generated by two members \(\alpha^*, \beta^* \) such that we have \(\alpha^* = (0, \alpha) \) and \(\beta^* = \beta(n) = (n, \beta) \) in the above correspondence, and that \(\alpha \) is expanding (viz. the eigenvalues of the linear map \(\alpha \) are greater than one and this is a characterization of \(H^* \)).

A question yet to be answered would be: What is the whole picture of all the affine structure of \(T^2 \)? We intend to answer this question in a forthcoming paper.

Finally we list the conjugate classes of the maximal abelian connected subgroups \(G \) of \(A(R^2) \), writing \((a_{ij}, b_{ij}) \) for the affine transformation \((x, y) \rightarrow (ax + by + p, cx + dy + q) \). \(G \) consists of

(I-1): \[
\begin{pmatrix}
a & b & 0 \\
0 & a & 0
\end{pmatrix},
\]

(I-2): \[
\begin{pmatrix}
a & 0 & 0 \\
0 & 0 & d
\end{pmatrix},
\]

(I-3): \[
\begin{pmatrix}
u & v & 0 \\
-v & u & 0
\end{pmatrix},
\]

(II): \[
\begin{pmatrix}
1 & 0 & p \\
0 & 0 & d
\end{pmatrix},
\]

(III-1): \[
\begin{pmatrix}
1 & b & p \\
0 & 1 & b
\end{pmatrix},
\]

(III-2): \[
\begin{pmatrix}
1 & 0 & p \\
0 & 1 & q
\end{pmatrix},
\]

(III-3): \[
\begin{pmatrix}
1 & b & p \\
0 & 1 & 0
\end{pmatrix},
\]
where $a > 0$, $d > 0$, $(u, v) \neq (0, 0)$ and the others are arbitrary real numbers.

REFERENCES