GENERALIZED BRIESKORN MANIFOLDS

BY RICHARD C. RANDELL

Communicated by Mary Ellen Rudin, July 10, 1973

Introduction. The manifolds defined by E. Brieskorn in [1] have been much studied and used in recent years. We present here the calculation of various invariants of these manifolds. Actually, we study a more general class, manifolds K defined as neighborhood boundaries of isolated singularities of complete intersections of Brieskorn varieties subject to the condition that K admits a natural type of S^1-action. This class contains the manifolds studied by H. Hamm [5] as a proper subset.

The results described here are from the author's University of Wisconsin Ph.D. thesis, written with the invaluable guidance of Professor Peter Orlik. Details, proofs, and further results will appear elsewhere.

Definition. Let

$$ f_i(z_1, z_2, \ldots, z_{n+m}) = \sum_{j=1}^{n+m} a_{ij} z_j^{a_{ij}}, \quad i = 1, 2, \ldots, m, $$

be a collection of complex polynomials. Let \mathcal{V} be the variety in \mathbb{C}^{n+m} associated with f_i and let $V = \mathcal{V} \cap \bigcap_{i=1}^{m} V_i$. Let $d_i = \text{l.c.m.}(a_{i1}, \ldots, a_{in+m})$.

We suppose

(i) V is a complete intersection of the V_i.

(ii) V has an isolated singularity at the origin.

(iii) q_{ij} is independent of i (let $q_j = q_{ij}$).

Let $K = \mathcal{V} \cap S^{2(n+m)-1} \subset C^{n+m}$. The C^*-action on V given by

$$ t \circ (z_1, \ldots, z_{n+m}) = (t^{q_1}z_1, \ldots, t^{q_{n+m}}z_{n+m}) $$

restricts to an action of S^1 on K. Let K^* be the orbit space, $K^* = K/S^1 = V - \{0\}/C^*$. K is called a generalized Brieskorn manifold.

In [5] Hamm considered similar objects. He required that the exponents a_{ij} be independent of i, a more restrictive condition than (iii) above. [4] shows that K is an $(n-2)$-connected $(2n-1)$-manifold which bounds a parallelizable manifold. Thus K is essentially classified (as a smooth

Key words and phrases. Brieskorn manifold, Brieskorn variety, complete intersection.

Copyright © American Mathematical Society 1974

111
manifold) by $H_{n-1}(K)$, a linking pairing on the torsion subgroup of $H_{n-1}(K)$, and a signature or Arf invariant (as n is even or odd). (See [3], [10], and [11].)

Properties of K^*. We generalize some results of W. D. Neumann [7].

Theorem 1. K^* is a manifold if and only if there exist positive integers $c_1, \ldots, c_m; t_1, \ldots, t_{n+m}; s_1, \ldots, s_{n+m}$ such that

(i) $(t_j, t_k)=1, j \neq k$;

(ii) $(s_j, t_j)=1, \forall j$;

(iii) $\text{g.c.d.}(s_{j_1}, \ldots, s_{j_{m+1}})=1$ for all $(m+1)$-element subsets $\{j_1, \ldots, j_{m+1}\}$ of $\{1, \ldots, n+m\}$;

(iv) $a_{ij}=(c_i t_j / s_j) \text{l.c.m.}(s_1, \ldots, s_{n+m})$, for all i and j.

It turns out that $t_j=\text{g.c.d.}(q_1, \ldots, q_1, \ldots, q_{n+m})$.

By a slight generalization of the construction of Brieskorn and Van de Ven [2], K^* has a (possibly singular) complex structure.

Theorem 2. K^* is a manifold if and only if this complex structure is nonsingular.

Theorem 3. K^* (but not K) is independent of the t_j.

Hence we assume that $t_j=1$ when we work with K^*.

Next we turn to index invariants of K^*. First we prove a general result. Let X be a compact complex manifold and let

$$G = \mathbb{Z}_{n_1} \langle \beta_1 \rangle + \cdots + \mathbb{Z}_{n_k} \langle \beta_k \rangle$$

act effectively on X so that

(i) the fixed point set Y_t of $(1, \ldots, \beta_t, \ldots, 1) \in G$ has complex codimension 1,

(ii) the various Y_t's intersect transversely, and

(iii) the fixed point set of $(1, \ldots, \beta_{i_1}^{k_1}, \ldots, \beta_{i_s}^{k_s}, \ldots, 1)$, $\beta_{i_j}^{k_j} \neq 1$, $j=1, \ldots, s$, is $Y_{i_1} \cap \cdots \cap Y_{i_s}$.

Let sign, χ, and e denote signature, arithmetic genus, and euler characteristic respectively.

Theorem 4.

\[
\text{sign}(X/G) = \text{sign} \left(\prod_{i=1}^{k} \left(\frac{1}{1 + Y_i^{n_i}} - \frac{1}{1 - Y_i^{n_i}} Y_i \right) \right);
\]

\[
\chi(X/G) = \chi \left(\prod_{i=1}^{k} \frac{1}{1 - (1 - Y_i^{n_i})} \right);
\]

\[
e(X/G) = e \left(\prod_{i=1}^{k} \left(\frac{1}{n_i} + \frac{(n_i - 1)}{n_i} Y_i \right) \right).
\]
This theorem is to be interpreted as in Hirzebruch [6]. The proof uses some of the techniques of that paper.

We apply Theorem 4 and similar results to compute the index invariants of K^*. We find a manifold X and a finite group G so that $X/G \cong K^*$. For this X and G it is easy to compute the index invariants of monomials in the Y_i, and thus we can compute the invariants of K^*.

Here is an example. Let $D = d_1d_2\cdots d_m$, $Q = q_1q_2\cdots q_{n+m}$. Let r_s be the coefficient of x^s in $\prod_{i=1}^m (1 - d_i x + d_i^2 x^2 - \cdots)$, and let $J = \{1, \cdots, n+m\}$.

$$J_k = \{j_1, \cdots, j_k\} \subseteq J.$$

Theorem 5.

$$e(K^*) = \frac{D}{Q} \left[\sum_{k=0}^{n-1} \left(\sum_{s=0}^{n-k} \left(r_s \left(n + m - k \right) \sum_{J_k \subseteq J, \ell = 1}^{k} (q_j - 1) \right) \right) \right]$$

$$+ \left[\sum_{J_k \subseteq J, k > m} \left(\gcd(q_{j_1}, \cdots, q_{j_k}) - 1 \right) \sum_{s=0}^{k-1-m} r_s \left(k - m - 1 - s \right) \right].$$

(For this formula the a_{ij} must be normalized so that the t_j's are 1.)

The homology of K and K^*. The S^1-action has no fixed points on K, so the orbit map $\pi: K \to K^*$ has a rational Gysin sequence. From this we obtain

Theorem 6. Let $\kappa = \text{rank}(\tilde{H}_{n-1}(K; \mathbb{Z}))$.

(i) $H_q(K^*; Q) \cong \begin{cases} Q, & q \text{ even, } 0 \leq q \leq 2n - 2 \\ Q^\times, & q = n - 1 \\ 0, & \text{otherwise} \end{cases} \oplus \begin{cases} 0, & q = n - 1 \\ 0, & \text{otherwise} \end{cases}$

(ii) $\kappa = (-1)^{n-1}(e(K^*) - n)$.

Thus Theorems 5 and 6 describe the rational homology of K and K^*. We conclude with an algorithm for computing the torsion of $H_*(K)$ and $H_*(K^*)$. It is a generalization for Orlik's conjecture for the homology torsion of Brieskorn manifolds [8].

$A = (a_{ij})$ is an $m \times (n+m)$-matrix. Let $A(j_1, \cdots, j_s)$ be the $m \times s$ matrix consisting of columns j_1, \cdots, j_s of A. Let $K(j_1, \cdots, j_s) = \{z \in K | z_j = 0 \text{ for } j \notin \{j_1, \cdots, j_s\}\}$. Let $\kappa(K) = \kappa(A) = \text{rank}(\tilde{H}_{n-1}(K))$, and $\kappa(A(j_1, \cdots, j_s)) = \text{rank}(\tilde{H}_{n-1}(K(j_1, \cdots, j_s)))$. Let κ of the empty matrix be 1. Put

$$\varepsilon_{n+m-s} = 1, \text{ if } n + m - s \text{ is odd,}$$

$$= 0, \text{ if } n + m - s \text{ is even;}$$

$$\varepsilon_{n+m-s,q} = 1, \text{ if } 0 < s + 1 - m \leq q \text{ and } q + m - s \text{ is odd,}$$

$$= 0, \text{ otherwise.}$$
Let \(c(\varnothing) = \gcd(a_{11}, \ldots, a_{1,n+m}) \) and for \(J_s = \{ j_1, \ldots, j_s \} \) with \(j_1 < \cdots < j_s \) define
\[
c(j_1, \ldots, j_s) = \frac{\gcd(a_{11}, \ldots, a_{1,i_1}, \ldots, a_{1,n+m})}{\prod_{i \subseteq J_s} c(i_1, \ldots, i_t)}
\]
where \(I = \{ i_1, \ldots, i_t \} \) and \(i_1 < \cdots < i_t \). Except for \(c(\varnothing) \) the \(c(j_1, \ldots, j_s) \) are independent of the row of \(A \) used to compute them. (Here we used the first row.) We redefine \(c(\varnothing) \) by
\[
c(\varnothing) = \prod_{i=1}^{m} \gcd(a_{i1}, \ldots, a_{i,n+m}).
\]

Let \(k(j_1, \ldots, j_s) = \varepsilon_{n+m-s} \kappa(j_1, \ldots, j_s), k_q(j_1, \ldots, j_s) = \varepsilon_{n+m-s} \kappa(j_1, \ldots, j_s), d_j = \prod_{k(j_1, \ldots, j_s) = j} c(j_1, \ldots, j_s), d_{j, q} = \prod_{k(j_1, \ldots, j_s) = j} c(j_1, \ldots, j_s), r = \max\{k(j_1, \ldots, j_s)\}, \text{ and } r_q = \max\{k_{q}(j_1, \ldots, j_s)\} \).

Let \(\text{Tor}(A) = \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_n} \) and \(\text{Tor}_q(A) = \mathbb{Z}_{d_{1,q}} \oplus \cdots \oplus \mathbb{Z}_{d_{n,q}} \) and for any finitely generated abelian group \(G \), let \(\text{Tor}(G) \) denote the torsion subgroup.

Theorem 7. (i) \(\text{Tor}(H_{n-1}(K)) \cong \text{Tor}(A) \);

(ii) \(\text{Tor}(H_q(K^n)) \cong \begin{cases} \text{Tor}_q(A), & q \leq n - 2; \\ 0, & \text{otherwise}. \end{cases} \)

For \(m = 1 \) (i.e. K. Brieskorn), (i) was conjectured by Orlik.

Sketch of Proof. We use induction on \(n \). For \(n = 1 \) the result is trivial. For \(n = 2 \) it follows from [9], so we assume the result for \(\dim(K) < 2n - 1 \) with \(n > 2 \). Let \(Z(p) \) denote the integers localized at some prime ideal \((p) \). First suppose that all \(t_j = 1 \). Since \(t_j = \gcd(q_1, \ldots, q_j, \ldots, q_{n+m}) \), \(L_p = \{ z \in K | (p, |S^n\{z\}) > 1 \} \) is a submanifold of codimension at least 4. Let \(L \supseteq L_p \) have codimension equal to 4. \((L = K \cap \{z_i = z_j = 0\}) \). Let \(N \) be a closed \(S^1 \)-invariant tubular neighborhood of \(L \), and let \(M = (K - \overline{N}) \), with \(\pi : M \to M^* \) the orbit map. \(\pi \) has a Gysin sequence over \(Z(p) \) and \(M^* \) satisfies Poincaré duality over \(Z(p) \). We use these facts to show that there are isomorphisms of \(p \)-torsion \(H_{n-3}(L) \cong H_{n}(\partial M) \cong H_{n}(M) \cong H_{n-1}(M^*) \cong H_{n-1}(M) \cong H_{n-1}(K) \). By comparing the results of the algorithm for \(H_{n-3}(L) \) (known by inductive hypothesis) and \(H_{n-1}(K) \) we find that the \(p \)-torsion of \(H_{n-1}(K) \) is given by the algorithm. Finally we relax the assumption that \(t_j = 1 \). If \(p \) divides \(t_j \), we note that \(K \) is a \(t_j \)-fold branched cover of \(K' \), where \(K' \) has \(t_j = 1 \). By comparing the difference of the torsion of \(K \)
with the (known) torsion of K' we complete the induction step for (i). For (ii) we use similar ideas.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104