PERIODICALLY PERTURBED CONSERVATIVE SYSTEMS

BY SHAIR AHMAD

Communicated by Francois Treves, June 28, 1973

In this note we announce a result concerning the existence of a periodic solution for a class of periodically perturbed conservative systems. Our result, in a sense, completes a series of investigations originated by W. S. Loud [4]. Also see [1], [2], [3], and [5]. Our techniques are different from those of the authors cited above.

Consider the vector differential equation

\[x'' + \text{grad } G(x) = p(t) = p(t + 2\pi), \]

where \(p \in C(R, R^n) \), \(G \in C^2(R^n, R) \). This equation can be interpreted as the newtonian equation of a mechanical system subject to conservative internal forces and periodical external forces.

Theorem 1 (Lazer [1]). Let \(A \) and \(B \) be real constant symmetric matrices such that if \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) and \(\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n \) denote the eigenvalues of \(A \) and \(B \) respectively then there exist integers \(N_k \geq 0 \), \(k = 1, \cdots, n \), such that \(N_k^2 < \lambda_k \leq \mu_k < (N_k + 1)^2 \).

If, for all \(a \in R^n \), \(A \leq \partial^2 G(a)/\partial x_i \partial x_j \leq B \), then (1) has at most one \(2\pi \)-periodic solution.

Our theorem establishes the existence part of the preceding theorem. More specifically, we prove

**Theorem 1*. If \(G \), \(A \) and \(B \) satisfy the hypothesis of Theorem 1, then (1) has a \(2\pi \)-periodic solution.

The key to the proof of our theorem is

Lemma 1. Let \(\bar{Q}(t) \) be a real \(n \times n \) symmetric matrix whose elements are bounded, measurable and \(2\pi \)-periodic on the real line. Let \(A \) and \(B \) be real constant symmetric matrices such that \(A \leq \bar{Q}(t) \leq B \). If \(\lambda_1 \leq \cdots \leq \lambda_n \) and \(\mu_1 \leq \cdots \leq \mu_n \) denote the eigenvalues of \(A \) and \(B \) respectively then there

exist integers \(N_k \geq 0, k=1, \ldots, n \), satisfying

\[N_k^2 < \lambda_k \leq \mu_k < (N_k + 1)^2. \]

Let \(f(t) \) be a real vector-valued 2\(\pi \)-periodic continuous function with \(\|f(t)\| \leq K, K \) some number. Then there exists a number \(r > 0 \), independent of \(f(t) \), such that for any periodic solution \(u \) of \(u'' + Qu = f \) the inequality \(\|u(t)\|^2 + \|u'(t)\|^2 \leq r^2 \) holds for all \(t \) (we mean \(u' \) absolutely continuous and the preceding equation holds a.e.).

Using this lemma we prove that our theorem follows from a generalization of Poincaré's perturbation theorem (see [3]). The proof of Lemma 1 is too long to give here. A brief sketch may be given along the following line. Assuming that the conclusion of Lemma 1 is false, we construct a sequence of equations of the form

\[z''_m + Q_m(t)z_m = g_m(t) \quad \text{a.e.} \]

where \(z_m, Q_m \) and \(g_m \) are 2\(\pi \)-periodic (\(Q_m \) symmetric). It is shown that the sequences \(\{z_m\} \) and \(\{z'_m\} \) are uniformly bounded and equicontinuous, and \(\{Q_m\} \) weakly converges to some matrix \(Q(t) \). Using the fact that the set of symmetric \(n \times n \) matrices \(S \) satisfying \(A \leq S \leq B \) can be considered as a compact convex subset of \(\mathbb{R}^p, p = n(n+1)/2 \), it follows from Lemma 1A of (p. 157 of [5]) that \(Q(t) \) is a 2\(\pi \)-periodic symmetric matrix and \(A \leq Q(t) \leq B \). It is then shown that this leads to a contradiction of Theorem 1 of [1].

REFERENCES