Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Existence of solutions of differential equations in Banach space


Author: William J. Knight
Journal: Bull. Amer. Math. Soc. 80 (1974), 148-149
MSC (1970): Primary 34G05; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9904-1974-13395-1
MathSciNet review: 0335992
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. N. Chow and J. D. Schuur, An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018-1020. MR 44#4334. MR 287127
  • 2. W. E. Fitzgibbon, Weakly continuous accretive operators, Bull. Amer. Math. Soc. 79 (1973), 473-474. MR 313903
  • 3. Felix E. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485-523. MR 30 #4167. MR 173960
  • 4. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
  • 5. E. Hille and R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664. MR 89373
  • 6. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 34G05, 47H10

Retrieve articles in all journals with MSC (1970): 34G05, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13395-1

American Mathematical Society