MINIMAL TOTAL ABSOLUTE CURVATURE FOR ORIENTABLE SURFACES WITH BOUNDARY

BY JAMES H. WHITE

Communicated by S. S. Chern, September 22, 1973

Let \(M \) be an orientable surface with single smooth boundary curve \(C \) which is \(C^2 \) imbedded in Euclidean three-space \(E^3 \). (\(M \) may be thought of as a closed orientable surface with a single disc removed.) Let \(M_\epsilon \) be the set of points of \(E^3 \) at a distance \(\epsilon \) from \(M \). \(M_\epsilon \) is, of course, for small \(\epsilon \), an imbedded closed surface which is almost everywhere \(C^2 \). Using N. Grossman's [1] adaptation of N. Kuiper's [2] definition, we say that \(M \) has minimal total absolute curvature if \(M_\epsilon \) is tightly imbedded or has the two piece property, TPP [2].

We announce the following result:

Theorem. Let \(M \) be an orientable surface of genus \(g \) with a single smooth boundary curve which is \(C^2 \) imbedded in \(E^3 \). Then \(M \) has minimal total absolute curvature if and only if \(M \) has \(g = 0 \) and is a planar disc bounded by a convex curve.

The proof uses a series of integral equations and geometric arguments. The outline is as follows. First, in his paper [1], N. Grossman shows that an orientable surface \(M \) of genus \(g \) with boundary curve \(C \) has minimal total absolute curvature only if the following integral equality holds:

\[
\frac{1}{2\pi} \int_M |K| \, dA + \frac{1}{2\pi} \int_C \kappa \, ds = 1 + 2g,
\]

where \(K \) is the Gauss curvature of \(M \) and \(\kappa \) is the Frenet curvature of the boundary curve \(C \) considered as a space curve in \(E^3 \), where \(dA \) is the area element of \(M \) and \(ds \) is the arc element of \(C \). Note that the right-hand side is the sum of the betti-numbers of \(M \) and compare with Kuiper [2] for closed surfaces.

Next, the theorem of Gauss-Bonnet yields

\[
\frac{1}{2\pi} \int_M K \, dA + \frac{1}{2\pi} \int_C \kappa \, ds = 1 - 2g,
\]

Copyright © American Mathematical Society 1974
where κ_g is the geodesic curvature of C considered as a curve on the surface M.

Adding (1) and (2), we obtain that if M has minimal total absolute curvature,

$$(3) \quad \frac{1}{2\pi} \int_{M'\{K>0\}} K \, dA + \frac{1}{2\pi} \int_C (\kappa + \kappa_g) \, ds = 2,$$

where the first integral is taken over the points of M where $K > 0$.

Lemma 1. If M has minimal total absolute curvature, then M has TPP.

In [3], L. Rodriguez shows that, if M has TPP,

$$(4) \quad \frac{1}{2\pi} \int_{M'\{K>0\}} K \, dA + \frac{1}{2\pi} \int_C (\kappa + \kappa_g) \, ds = 2.$$

Subtracting (4) from (3), we obtain $(1/2\pi) \int_{M'\{K>0\}} K \, dA = 0$, and hence $K \leq 0$ in the interior of M.

Lemma 2. $K \leq 0$ in the interior of M.

Lemma 3. C is a plane convex curve.

Lemma 3 is proved by using Morse theory and studying the convex hull of M.

Lemma 4. $K \equiv 0$ in the interior of M.

This follows immediately from Lemmas 2 and 3.

Now Lemma 4 implies $\int_M |K| \, dA = 0$, and Lemma 3 implies $(1/2\pi) \int_C \kappa \, ds = 1$. Thus, in order for equation (1) to hold g must be zero and M must be a planar disc bounded by a convex curve.

References

3. L. Rodriguez, *The two-piece-property and relative tightness for surfaces with boundary* (xeroxed thesis), Brown University, Providence, R.I.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024