ADDENDUM TO: "ON EXTENSIONS OF FUNDAMENTAL GROUPS OF SURFACES AND RELATED GROUPS"

BY HEINER ZIESCHANG

Communicated by F. W. Gehring, October 4, 1973

Copying the methods of J. Nielsen [1] Theorem 1 of [2] can be proved, i.e. that a finite torsionfree extension of the fundamental group of a surface is isomorphic to the fundamental group of a surface. Indeed, the following slightly more general theorem can be proved, but it is considerably weaker than Theorem 1' of [2].

Theorem. Let \mathcal{G} be the fundamental group of a surface S and let \mathcal{G} be finitely generated. Let \mathcal{G} be a group which contains \mathcal{G} as a normal subgroup of finite index and which has the following properties:

(i) For each $g \in \mathcal{G}$ the automorphism of \mathcal{G} defined by $x \mapsto g^{-1}xg$ is induced by a homeomorphism of S.

(ii) If $g \in \mathcal{G}$ and $g^{-1}xg = x$ holds for all $x \in \mathcal{G}$, then $g \in \mathcal{G}$.

(iii) If $x^a = y^b = (xy)^c = 1$ holds for $x, y \in \mathcal{G}$ and $a, b, c \geq 2$, then x, y generate a cyclic subgroup of \mathcal{G}.

Then \mathcal{G} is isomorphic to a finitely generated discontinuous group of motions of the hyperbolic or euclidean plane.

I shall briefly sketch a proof of the Theorem which generalizes [1]. Let S be an orientable surface with finite genus and a finite number of holes and without boundary. We consider S as a Riemann surface. If the universal cover is holomorphically equivalent to the euclidean plane, everything can be proved in a similar way as in [2, Theorem 3]. Therefore we may assume that the universal cover is the hyperbolic plane H which we represent by the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ and the Poincaré model. The fundamental group of S acts on H as a group \mathcal{G} of conformal transformations. We may assume that \mathcal{G} contains only hyperbolic transformations except the identity. Then the methods of [1] can be applied: Each cyclic subgroup of \mathcal{G} consists of motions with the same axis, and a maximal cyclic subgroup contains all elements preserving an axis. Therefore each automorphism of \mathcal{G} induces a permutation of the axes of \mathcal{G} and
of their base points, which lie on \(\partial H = \{ z \in \mathbb{C} \mid |z| = 1 \} \). If the automorphism is induced by a homeomorphism of \(S \) (which corresponds to a \(\mathfrak{G} \)-invariant homeomorphism of \(H \)) the mapping of the set of base points can be extended to a homeomorphism of \(\partial H \) (this extends the homeomorphism of \(H \) to a homeomorphism of the closed unit disk). So \(\mathfrak{G} \) defines a group of permutations of the axes of \(\mathfrak{G} \). For \(g \in \mathfrak{G} \) and an axis \(A \), denote by \(gA \) the image axis. An axis \(A \) is simple, if \(gA \cap A \neq \emptyset \) for \(g \in \mathfrak{G} \) implies \(gA = A \). We may restrict ourselves to the case where the elements of \(\mathfrak{G} \) are induced by orientation preserving homeomorphisms of \(S \). Now we can repeat the arguments of [1, pp. 51-78], in this more general situation and we obtain

Lemma 1. If \(\mathfrak{G} \) admits a simple axis, then \(\mathfrak{G} \) is isomorphic to a finitely generated discontinuous group of motions of the hyperbolic plane \(H \).

The criterion for the existence of a simple axis is the same as that in Nielsen [1, pp. 78–94]:

Lemma 2. \(\mathfrak{G} \) admits a simple axis, if (iii) holds.

Remark. If the group \(\mathfrak{G} \) contains elements \(x, y \) with \(x^a = y^b = (xy)^c = 1 \), \(a, b, c \geq 2 \), which generate a noncyclic subgroup \(\mathcal{U} \), then it must be proved that the above relations are defining relations for \(\mathcal{U} \) (which I could not obtain in all cases) and that the index of \(\mathcal{U} \) in \(\mathfrak{G} \) is “small”. The conclusion in [1, pp. 99, lines 10–21], does not seem correct to me.

References

Ruhr-Universität Bochum, Institut fuer Mathematik, 463 Bochum, Postfach 2148, Germany