Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem


Author: Ian Richards
Journal: Bull. Amer. Math. Soc. 80 (1974), 419-438
MSC (1970): Primary 10H15, 10H30, 10-01
MathSciNet review: 0337832
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. P. Erdös, On the difference of consecutive primes, Quart. J. Math. Oxford Ser. 6 (1935), 124-128.
  • 2. Paul Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300. MR 0098702 (20 #5157)
  • 3. P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers, Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971) Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971, pp. 1–14. MR 0337828 (49 #2597)
  • 4. G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, http://dx.doi.org/10.1007/BF02403921
  • 5. Douglas Hensley and Ian Richards, Primes in intervals, Acta Arith. 25 (1973/74), 375–391. MR 0396440 (53 #305)
  • 6. A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Mathematics and Mathematical Physics, No. 30, Stechert-Hafner, Inc., New York, 1964. MR 0184920 (32 #2391)
  • 7. D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117–151. MR 0246815 (40 #84)
  • 8. R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.
  • 9. A. Schinzel, Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers”, Acta Arith. 7 (1961/1962), 1–8. MR 0130203 (24 #A70)
  • 10. A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185–208; erratum 5 (1958), 259 (French). MR 0106202 (21 #4936)
  • 11. E. Westzynthius, Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors (5) 25 (1931), 1-37.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 10H15, 10H30, 10-01

Retrieve articles in all journals with MSC (1970): 10H15, 10H30, 10-01


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1974-13434-8
PII: S 0002-9904(1974)13434-8



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia