Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem


Author: Ian Richards
Journal: Bull. Amer. Math. Soc. 80 (1974), 419-438
MSC (1970): Primary 10H15, 10H30, 10-01
DOI: https://doi.org/10.1090/S0002-9904-1974-13434-8
MathSciNet review: 0337832
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. P. Erdös, On the difference of consecutive primes, Quart. J. Math. Oxford Ser. 6 (1935), 124-128.
  • 2. P. Erdös, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300. MR 20 #5157. MR 98702
  • 3. P. Erdös and J. L. Selfridge, Complete prime subsets of consecutive integers, Proc. Manitoba Conf. on Numerical Mathematics, University of Manitoba, Winnepeg, 1971, pp. 1-14. MR 337828
  • 4. G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, https://doi.org/10.1007/BF02403921
  • 5. D. Hensley and I. Richards, Primes in intervals, Acta Arith. 25 (1974), 375-391. MR 396440
  • 6. A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Math. and Math. Phys., no. 30, Stechert-Hafner, New York, 1964. MR 32 #2391. MR 184920
  • 7. D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Math. Assoc. Amer, (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117-151. MR 40 #84. MR 246815
  • 8. R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.
  • 9. A. Schinzel, Remarks on the paper 'Sur certaines hypothèses concernant les nombres premiers', Acta Arith. 7 (1961/62), 1-8. MR 24 #A70. MR 130203
  • 10. A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208; erratum 5 (1959), 259. MR 21 #4936. MR 106202
  • 11. E. Westzynthius, Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors (5) 25 (1931), 1-37.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 10H15, 10H30, 10-01

Retrieve articles in all journals with MSC (1970): 10H15, 10H30, 10-01


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13434-8

American Mathematical Society