Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

A boundary maximum principle for degenerate elliptic-parabolic inequalities, for characteristic boundary points


Author: Sally Ellene Myers
Journal: Bull. Amer. Math. Soc. 80 (1974), 527-530
MSC (1970): Primary 35J25, 35J70, 35K20
MathSciNet review: 0336070
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277–304 xii (French, with English summary). MR 0262881 (41 #7486)
  • 2. Avner Friedman, Remarks on the maximum principle for parabolic equations and its applications, Pacific J. Math. 8 (1958), 201–211. MR 0102655 (21 #1444)
  • 3. C. Denson Hill, A sharp maximum principle for degenerate elliptic-parabolic equations., Indiana Univ. Math. J. 20 (1970/1971), 213–229. MR 0287175 (44 #4382)
  • 4. Ray Redheffer, The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J. 21 (1971/72), 227–248. MR 0422864 (54 #10850)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 35J25, 35J70, 35K20

Retrieve articles in all journals with MSC (1970): 35J25, 35J70, 35K20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1974-13480-4
PII: S 0002-9904(1974)13480-4