Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A physically consistent, discrete $n$-body model


Author: Donald Greenspan
Journal: Bull. Amer. Math. Soc. 80 (1974), 553-555
MSC (1970): Primary 65L05, 70F10
DOI: https://doi.org/10.1090/S0002-9904-1974-13495-6
MathSciNet review: 0337085
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. G. Birkhoff and R. E. Lynch, Lagrangian hydrodynamic computations and molecular models of matter, LA-2618, Los Alamos Sci. Lab., Los Alamos, N.M., 1961.
  • 2. B. J. Daly, F. H. Harlow and J. E. Welch, Numerical fluid dynamics using the particle-and-force method, LA-3144, Part I, Los Alamos Sci. Lab., Los Alamos, N.M., 1965.
  • 3. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman lectures on physics, Vol. I: Mainly mechanics, radiation and heat, Addison-Wesley, Reading, Mass., 1963. MR 35 #3942. MR 213077
  • 4. J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Dynamics of radiation damage, Phys. Rev. 120 (1960), 1229-1253.
  • 5. D. Greenspan, An algebraic, energy conserving formulation of classical molecular and Newtonian n-body interaction, Bull. Amer. Math. Soc. 79 (1973), 423-427. MR 327109
  • 6. D. Greenspan, Symmetry in discrete mechanics, Found. Phys. 3 (1973), 247-253.
  • 7. A. B. Langdon, 'Energy-conserving'plasma simulation algorithms, J. Computational Phys. 12 (1973), 247-268.
  • 8. A. K. MacPherson, The formation of shock waves in a dense gas using a molecular dynamics type technique, J. Fluid Mech. 45 (1971), 601-621.
  • 9. J. von Neumann, Proposal and analysis of a new numerical method for the treatment of hydrodynamical shock problems, Collected works. Vol. VI: Theory of games, astrophysics, hydrodynamics and meteorology, A Pergamon Press Book, Macmillan, New York, 1963. MR 28 #1105. MR 157876
  • 10. J. R. Pasta and S. Ulam, Heuristic numerical work in some problems of hydrodynamics, Math. Tables Aids Comput. 13 (1959), 1-12. MR 21 #2348. MR 103580
  • 11. Yu. P. Popov and A. A. Samarskiĭ, Completely conservative difference schemes for magnetohydrodynamic equations, U.S.S.R. Comput. Math, and Math. Phys. 10 (1970) 233-243.
  • 12. L. Verlet, Computer experiments on classical fluids. II. Equilibrium correlation functions, Phys. Rev. 165 (1968), 201-214.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 65L05, 70F10

Retrieve articles in all journals with MSC (1970): 65L05, 70F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13495-6

American Mathematical Society