MANIFOLDS WITH THE FIXED POINT PROPERTY. I

BY S. Y. HUSSEINI

Communicated by Mary Ellen Rudin, November 6, 1973

1. Introduction. Suppose that \(f : M \rightarrow M \) is a map of the simply connected closed (smooth or PL) manifold \(M \) which preserves a given geometric structure. We shall consider the question of when \(f \) has a fixed point. (The geometric structure is described by an element \(\xi \) in \(K_\mathbb{R}(M) \), the Grothendieck group of real vector bundles over \(M \). If \(\deg f = 1 \), then for \(f \) to preserve \(\xi \) means just that \(f^* \xi = \xi \), and the appropriate notion when \(\deg f \neq 1 \) is given below in §2. Such maps are said to be \((\xi, \lambda)\)-maps with \(\lambda \) an integer.) Since \(M \) is simply connected, one need only compute the Lefschetz number \(\mathcal{L}(f) \) of \(f \). Thus there are three natural stages to the solution: the determination of the induced homomorphism \(f^* : \mathbb{H}^*(M; \mathbb{Z}) \rightarrow \mathbb{H}^*(M; \mathbb{Z}) \) first below the middle dimension, then in the middle dimension (when \(\dim M \) is even), and finally the determination of how the two are related to each other and how they determine the behaviour above the middle dimension.

As a first step in this direction, we consider here the case of \((2m-1)\)-connected \(M \) of dimension \(4m \) whose intersection pairing is definite (said to be of class \(\mathcal{M}_{4m} \)). It is shown that if \(\xi \) is asymmetric enough in a suitable sense (described below in §2), then any \((\xi, \lambda)\)-map \(f : M \rightarrow M \) has a fixed point. In particular it follows that if the tangent bundle \(\tau(M) \) of \(M \) is asymmetric enough, then a \((\tau M, 1)\)-map \(f : M \rightarrow M \) has a fixed point. Therefore every homeomorphism of such a manifold \(M \) has a fixed point. It is also shown that the product of \((\xi, \lambda)\)-maps with \(\xi \) being asymmetric also has a fixed point.

[Note. At this point I would like to thank Ed Fadell for the suggestions and stimulation offered in many good conversations on this topic.]

2. Statement of results. Suppose that \(M \) is a smooth (or PL) simply connected closed manifold of dimension \(4m \). A map \(f : M \rightarrow M \) is said to be a \((\xi, \lambda)\)-map, where \(\lambda \) is an integer, if and only if \(f^* \xi = \lambda \xi + p^* \eta \) where

\(^1\) While working on this paper the author has been partially supported by the National Science Foundation GP-29538-A4.
\(p: M \to S^{4m} \) is a map of degree 1 and \(\eta \in K_R(S^{4m}) \). (Note that a diffeomorphism \(f: M \to M \) is a \((\tau M, 1)\)-map, \(\tau(M) \) being the tangent bundle of \(M \).)

Assume now that \(M \) is \((2m-1)\)-connected, and suppose that the intersection pairing

\[\varphi: H^{2m}(M; \mathbb{Z}) \times H^{2m}(H; \mathbb{Z}) \to \mathbb{Z} \]

is positive definite. The class of such manifolds will be denoted by \(\mathcal{M}_{4m} \).

One can easily show that this implies that \(\deg f = \lambda^2 \) and the Lefschetz number \(\mathcal{L}(f) = 1 + s\lambda + \lambda^2 \), with \(s \) rational and \(|s| \leq \sigma \), \(\sigma \) being the signature of \(\varphi \). Hence \(\mathcal{L}(f) \neq 0 \) for \(|\lambda| > \sigma \). On the other hand, the behaviour of \(\mathcal{L}(f) \) for \(|\lambda| \leq \sigma \) is quite different, and thus \(\sigma \) is, in a sense, a critical threshold.

To describe the case \(|\lambda| \leq \sigma \), one shows first that there is a basis \(\mathcal{S} = \{x_1, \ldots, x_a\} \) for \(H_{2m}(M; \mathbb{Z}) \) with the property that \(\langle x_i, c_m \rangle = \beta_i \sigma \) where \(\beta = \min(x, c_m) \) and \(s_i \) are integers such that \(s_1 = 1 \), \(s_i - s_{i-1} > 0 \) for all \(j > i \), and \(c_m \) the \(m \)th Chern class of \(f \).

The basis \(\mathcal{S} = \{x_1, \ldots, x_a\} \) defines a critical region for \(\xi \). If \(x, y \in H_{2m}(M; \mathbb{Z}) \) and \(xy \) denotes their intersection number, then the critical region is the set

\[B_{\mathcal{S}} = \{x \in H_{2m}(M; \mathbb{Z}) \mid x^2 \leq \sigma^2 \mu_{\mathcal{S}}\} \]

where \(\mu_{\mathcal{S}} = \max_i x_i^2 \). Now let \(\beta_{\mathcal{S}} \) be the smallest integer such that \(|a_i| < \beta_{\mathcal{S}} - \sigma \) for all \(i \), where \(\sum_i a_i x_i \in B_{\mathcal{S}} \). \(\xi \) will be said to be sufficiently asymmetric if, and only if, \(\beta \geq \beta_{\mathcal{S}} \).

Theorem 2.1. Suppose that \(\xi \) is sufficiently asymmetric. Then any \((\xi, \lambda)\)-map \(f: M \to M \) has a fixed point, where \(M \in \mathcal{M}_{4m} \) and \(m > 4 \).

The following is an immediate consequence.

Theorem 2.2. Suppose that \(M \in \mathcal{M}_{4m} \) with \(m \) even and \(m > 4 \), and assume that \(\tau(M) \), the tangent bundle of \(M \), is sufficiently asymmetric. Then any \((\tau M, 1)\)-map \(f: M \to M \) has a fixed point. In particular, any homeomorphism of \(M \) has a fixed point.

The next theorem describes the behaviour of the products of \((\xi, \lambda)\)-maps.

Theorem 2.3. Suppose that \(M' \) and \(M'' \) are two manifolds in \(\mathcal{M}_{4m} \). and \(\mathcal{M}_{4m} \) with \(m' \), \(m'' > 4 \) Let \(\xi' \in K_R(M') \) and \(\xi'' \in K_R(M'') \) be sufficiently asymmetric, and put \(\xi = \xi' \otimes \xi'' \) where \(\otimes \) is the tensor product. Then any \((\xi, \lambda)\)-map \(f: M' \times M'' \to M' \times M'' \) has a fixed point.
3. Construction of (ξ, λ)-maps. In view of the preceding, it is important to know whether there is a (ξ, λ)-map $f: M \to M$. A map such as f has degree λ^2, and therefore the question becomes whether there is a map $f: M \to M$ of a given degree and whether a map of a given degree preserves a given $\xi \in K_\mathbb{Z}(M)$. Let therefore $\alpha: H_{2m}(M; \mathbb{Z}) \to \pi_{2m-1}SO$ be the map which associates to x the characteristic class of the induced bundle $g^*\tau(M)$, g being an imbedding $S^{2m} \to M$ realizing x.

Theorem 3.1. Suppose that $\gamma: H^{2m}(M; \mathbb{Z}) \to H^{2m}(M; \mathbb{Z})$ is a monomorphism such that $\varphi(\gamma x, \gamma y) = \lambda^2 \varphi(x, y)$ for all $x, y \in H^{2m}(M; \mathbb{Z})$, where λ is a given integer and φ is the intersection pairing in M. Assume also that $\gamma(\alpha) = \lambda \alpha$. Then there is a map $f: M \to M$ such that γ is the induced homomorphism on cohomology, provided that $J(\lambda(\lambda-1)\alpha(x)) = 0$ for all $x \in H_{2m}(M; \mathbb{Z})$, with J being the J-homomorphism (cf. [2, Lemma 10] and [1, Theorem 5]).

Whether or not a map $f: M \to M$ of a given degree preserves a given $\xi \in K_\mathbb{Z}(M)$ is decided by considering the characteristic classes of ξ and $f^*\xi$.

Thus the question of finding a (ξ, λ)-map $f: M \to M$ amounts to finding a homomorphism $\gamma: H^{2m}(M; \mathbb{Z}) \to H^{2m}(M; \mathbb{Z})$ which preserves the intersection pairing φ, the stable tangential structure α, and the Chern class of ξ. If M is almost parallelizable, then α is trivial, $\tau(M)$ has a large measure of symmetry, and the existence of (ξ, λ)-maps depends only on ξ and how large the group of automorphisms of φ is. In particular, if $\lambda = 1$ and $\xi = \tau(M)$, it follows that every quadratic automorphism $\gamma: H^{2m}(M; \mathbb{Z}) \to H^{2m}(M; \mathbb{Z})$ is induced by a corresponding homeomorphism $f: M \to M$.

References

1. C. T. C. Wall, Classification of $(n-1)$-connected $2n$-manifolds, Ann of Math. (2) 75 (1962), 163–189. MR 26 #3071.