ON THE BERGMAN KERNEL AND BIHOLOMORPHIC MAPPINGS OF PSEUDOCONVEX DOMAINS

BY CHARLES FEFFERMAN

Communicated by E. M. Stein, October 30, 1973

THEOREM 1. Let $D_1, D_2 \subset \mathbb{C}^n$ be strictly pseudoconvex domains with smooth boundaries and suppose that $F: D_1 \to D_2$ is biholomorphic (i.e., F is an analytic homeomorphism). Then F extends to a diffeomorphism of the closures, $\bar{F}: \bar{D}_1 \to \bar{D}_2$.

The main idea in proving Theorem 1 is to study the boundary behavior of geodesics in the Bergman metrics (see [2]) of D_1 and D_2. To do so, we use a rather explicit formula for the Bergman kernels of D_1 and D_2. We begin with a few definitions. Let $D = \{z \in \mathbb{C}^n | \varphi(z) > 0\}$ be a strictly pseudoconvex domain, where $\varphi \in C^\infty(\mathbb{C}^n)$ satisfies $\text{grad} \varphi \neq 0$ on ∂D.

1. Let $\mathcal{L}(\omega)$ denote the Levi form, i.e. the quadratic form

$$\mathcal{L}(\omega) \, dz \, \overline{dz} = \sum_{j,k} \left(\frac{\partial^2 (-\varphi)}{\partial z_j \partial \overline{z}_k} \right) |dz_j \, \overline{dz_k}|$$

restricted to the subspace $\{dz \in \mathbb{C}^n | \sum_j (\partial \varphi/\partial z_j)|_\omega \, dz_j = 0\}$ of \mathbb{C}^n.

2. For $\omega_1, \omega_2 \in D$, set

$$\rho(\omega_1, \omega_2) = |\omega_1 - \omega_2|^2 + |(\omega_1 - \omega_2) \cdot (\partial \varphi/\partial \omega)|_{\omega_1}.$$ (See [2] again.)

3. A smooth function φ defined on $\bar{D} \times \bar{D}$ has weight k (where $k \geq 0$ is an integer or half-integer) if the following estimate holds.

$$|\varphi(\omega_1, \omega_2)| \leq C(\varphi(\omega_1) + \varphi(\omega_2) + \rho(\omega_1, \omega_2))^k$$

4. Set

$$X(z, \omega) = \varphi(\omega) + \sum_j \frac{\partial \varphi}{\partial \omega_j} |(z_j - \omega_j) + \frac{1}{2} \sum_{i,k} \left(\frac{\partial^2 \varphi}{\partial \omega_i \partial \omega_k} \right) |(z_j - \omega_j)(z_k - \omega_k)|$$

Key words and phrases. Pseudoconvex domains, Bergman kernel function, biholomorphic mapping, Levi form, Bergman metric, boundary behavior of mappings.

Copyright © American Mathematical Society 1974

667
Elementary calculations show that \(X(z, \omega) \) has weight 1, and that
\[
|X(z, \omega)| \geq c(\psi(z) + \psi(\omega) + \rho(z, \omega)) \text{ in a region of the form } R_\delta = \{(z, \omega) \in \bar{D} \times D \mid |\psi(z) + \psi(\omega) + |z - \omega| < \delta\}.
\]

Theorem 2. The Bergman kernel \(K(z, \omega) \) for \(D \) has an asymptotic expansion
\[
K(z, \omega) \sim c \left| \text{grad } \psi(\omega) \right|^2 \det \mathcal{L}(\omega) X^{-(n+1)}(z, \omega) + \sum_{j=1}^{\infty} \phi_j(z, \omega) X^{-m_j}(z, \omega) + \overline{\phi}(z, \omega) \log X(z, \omega),
\]
where \(c \) is a constant, \(\phi_j \) and \(\overline{\phi} \) are smooth functions, \(\log \) denotes the principal branch of the logarithm on \(\{\text{Re}(\zeta) > 0\} \), weight \((\phi_j) - m_j \geq -n - \frac{1}{2} \), and weight \((\phi_j) - m_j \to \infty \) as \(j \to \infty \). The expansion (5) is valid in a region \(R_\delta \), and the symbol \(\sim \) means that for any integer \(k \),
\[
K(z, \omega) = c \left| \text{grad } \psi(\omega) \right|^2 \det \mathcal{L}(\omega) X^{-(n+1)}(z, \omega) + \sum_{j=1}^{\infty} \phi_j(z, \omega) X^{-m_j}(z, \omega) - \overline{\phi}(z, \omega) \log X(z, \omega) \in C^k(\bar{R}_\delta)
\]
for \(N \) large enough.

Corollary. \(K(z, z) = \Phi(z) \psi^{-(n+1)}(z) + \overline{\Phi}(z) \log \psi(z) \), where \(\Phi, \overline{\Phi} \in C^\infty(\bar{D}) \) and \(\Phi \neq 0 \) near \(\partial D \).

Although \(\overline{\Phi} \) vanishes on the unit ball, it can be nonzero, even on very smooth (say, real-analytic) domains.

The proof of Theorem 2 is based on an elementary fact.

Lemma 1. Given \(p \in \partial D \), we can find a region \(\bar{D} \) internally tangent to \(D \) to third order at \(p \), and an explicit biholomorphic change of co-ordinates \(F \) mapping a neighborhood of \(p \) in \(D \) to a neighborhood of \(\bar{F}(p) \) in the unit ball.

Once Lemma 1 is established, we can use \(\bar{F} \) to pull the Bergman kernel from the unit ball back to \(\bar{D} \); and since \(\bar{D} \) so closely approximates \(D \) near \(p \), we may hope that the (known) Bergman kernel for \(D \) provides a close approximation to the (unknown) Bergman kernel for \(\bar{D} \). Having thus obtained a candidate for an approximate Bergman kernel, we use a successive approximation procedure to prove (5).

Now we can attack Theorem 1 by using the corollary to Theorem 2 to make explicit differential-geometric calculations with the Bergman metric. We need two more definitions.

(6) For a fixed point \(z^0 \in D \) and a unit vector \(\omega \in S^{2n-1} \subseteq C^n \), let \(t \to \gamma(t, \omega, z^0) \) be the path of a particle moving with unit speed (in the Bergman metric) along the geodesic in \(D \) starting at \(t = 0 \) at the point
z^0 and travelling in the direction ω. We say that $(z^0, \omega^0) \in D \times S^{2n-1}$ is pseudotransversal if the map $\omega \mapsto \pi_{z^0}(\omega) = \lim_{t \to \infty} \gamma(t, \omega, z^0)$ is well defined for ω close to ω^0 in S^{2n-1} and provides a diffeomorphism of a small open neighborhood of $\omega^0 \in S^{2n-1}$ onto a small open neighborhood of $\pi_{z^0}(\omega) \in \partial D$.

(7) Let $t \to \gamma(t)$ be a geodesic in D, and define $\omega_\gamma(t) = \text{the unit vector in the direction } d\gamma(t)/dt$. If $(\gamma(t), \omega_\gamma(t)) \in D \times S^{2n-1}$ is pseudotransversal for all t larger than some fixed T, then we call γ a pseudotransversal geodesic.

Lemma 2. (a) Every geodesic $\gamma(t)$ not remaining in a fixed compact subset of D for all $t \geq 0$ is pseudotransversal.

(b) Every point $p \in \partial D$ is $\pi_{z^0}(\omega^0)$ for a certain $(z^0, \omega^0) \in D \times S^{2n-1}$.

Theorem 1 is a simple consequence of Lemma 2 and a result of Vormoor [1] which states that under the hypotheses of Theorem 1, F extends to a continuous mapping $\bar{F}: \bar{D}_1 \to \bar{D}_2$. For, given $p_1 \in \partial D_1$, we use Lemma 2(b) to find a geodesic $\gamma_1(t)$ in D_1 with $\lim_{t \to \infty} \gamma_1(t) = p_1$. Since F is an isometry of Bergman metrics, the path $\gamma_2(t) = F(\gamma_1(t))$ is a geodesic in D_2, and by Lemma 2(a), both γ_1 and γ_2 are pseudotransversal. Set $p_2 = \lim_{t \to \infty} \gamma_2(t)$, and pick T so large that $(z_1, \omega_1) = (\gamma_1(T), \omega_{\gamma_1}(T))$ and $(z_2, \omega_2) = (\gamma_2(T), \omega_{\gamma_2}(T))$ are both pseudotransversal. Since the differential of F induces a diffeomorphism $(dF)^\sim$ between the unit tangent vectors based at z_1 and those based at z_2, we have a commutative diagram

$$
\begin{array}{ccc}
S^{2n-1} & \xrightarrow{(dF)^\sim} & S^{2n-1} \\
\pi_{z_1} \downarrow & & \downarrow \pi_{z_2} \\
\partial D_1 & \xrightarrow{\bar{F}} & \partial D_2
\end{array}
$$

where the maps π_{z_1} and π_{z_2} are defined in small neighborhoods of $\omega_1 = \pi_{z_1}^{-1}(p_1)$ and $\omega_2 = \pi_{z_2}^{-1}(p_2)$. All the maps in the diagram, except \bar{F}, are already known to be diffeomorphisms. Hence \bar{F} must also be a diffeomorphism from a neighborhood of p_1 to a neighborhood of p_2, which proves Theorem 1.

References

1. H. Grauert, Lecture given at a conference on several complex variables held in Paris, 1972.

Department of Mathematics, University of Chicago, Chicago, Illinois 60637