A SEPARABLE SOMEWHAT REFLEXIVE BANACH SPACE WITH NONSEPARABLE DUAL

ROBERT C. JAMES

Communicated by Jacob Feldman, November 18, 1973

ABSTRACT. An example is given of a separable Banach space \(X \) whose dual is not separable, but each infinite-dimensional subspace of \(X \) contains an infinite-dimensional subspace isomorphic to Hilbert space. Thus \(X \) contains no subspace isomorphic to \(c_0 \) or \(l_1 \), \(X \) is somewhat reflexive, and no nonreflexive subspace has an unconditional basis.

It has been conjectured that every infinite-dimensional Banach space has an infinite-dimensional subspace that is either reflexive or isomorphic to \(c_0 \) or to \(l_1 \) [9, p. 165]. A counterexample would also be an example of a space that has no infinite-dimensional subspace with an unconditional basis [6, Theorem 2, p. 521]. It is known that there is a nonreflexive Banach space \(J \) with no subspace isomorphic to \(c_0 \) or to \(l_1 \) [6, pp. 523–527], but \(J^{**} \) is separable. Each of the following is a necessary and sufficient condition for a separable Banach space \(X \) to contain a subspace isomorphic to \(l_1 \); separability is not needed for conditions (i) and (ii) (see [5, Theorem 2.1, p. 13] and [10, p. 475]).

(i) \(L_1[0, 1] \) is isomorphic to a subspace of \(X^* \).
(ii) \(C[0, 1]^* \) is isomorphic to a subspace of \(X^* \).
(iii) \(X^* \) has a subspace isomorphic to \(l_1(\Gamma) \) for some uncountable \(\Gamma \).

A natural and well-known conjecture in view of the preceding is that a Banach space has a subspace isomorphic to \(l_1 \) if the space is separable and its dual is not separable (e.g., see [1, §9, p. 243], [2, §5.4, p. 174], and the last paragraph of [11]). It will be shown that this conjecture is false. The counterexample \(\mathcal{X} \) has the property that each infinite-dimensional subspace has an infinite-dimensional subspace isomorphic to Hilbert space. Thus \(\mathcal{X} \) is also a counterexample to the conjecture that each separable somewhat-reflexive space has a separable dual (see [3, Problem 3, p. 191] and [8, Remark IV.2, p. 86]). Also, neither \(c_0 \) nor \(l_1 \) has an infinite-dimensional subspace isomorphic to Hilbert space, so no nonreflexive subspace has an unconditional basis [6, Theorem 2, p. 521]. It has been

1 Supported in part by NSF Grant GP-28578.

Copyright © American Mathematical Society 1974
shown by J. Lindenstrauss and C. Stegall that X is a counterexample for several other conjectures. They will present these results in a later paper, as well as giving another example of a separable space with nonseparable dual that has no subspace isomorphic to l_1 (this space has a subspace isomorphic to c_0).

The counterexample is intimately related to the space J mentioned above, e.g., many complemented subspaces are isometric to J. This follows from the fact that, if $x = \{x_i\} \in J$, then

$$\|x\| = \sup \left\{ \left[\sum_{i=1}^{n-1} (x_{p(i+1)} - x_{p(i)})^2 \right]^{1/2} : 1 \leq p(1) < \cdots < p(n), n \geq 1 \right\},$$

but if x is written as $\{\xi_i\}$, where $\xi_i = x_i - x_{i+1}$ and $x = \sum_{i}^{\infty} \xi_i e_i$ with e_n the sequence for which $x_i = 1$ if $i \leq n$ and $x_i = 0$ if $i > n$, then

$$\|x\| = \sup \left\{ \left[\sum_{i=1}^{n-1} \left(\sum_{j=p(i)}^{p(i+1)-1} \xi_i \right)^2 \right]^{1/2} : 1 \leq p(1) < \cdots < p(n), n \geq 1 \right\}.$$

To describe the counterexample, first choose a set Ω of cardinality c, each of whose members can be thought of as an infinite subset of the positive integers or as a nested sequence of intervals obtained as follows. Associate $1 = b(1, 1)$ with the interval $[0, 1]$, then $2 = b(2, 1)$ with $[0, \frac{1}{2}]$ and $3 = b(2, 2)$ with $[\frac{1}{2}, 1]$, and in general for each positive integer n use the integers from 2^{n-1} to $2^n - 1$, or $\{b(n, i) : 1 \leq i \leq 2^{n-1}\}$, to label the 2^{n-1} intervals remaining at the nth stage of the process customarily used to describe the Cantor set. Now let each number t in the Cantor set determine a member of Ω, namely, the set of all integers associated with intervals containing t. By a segment we shall mean a finite increasing sequence (possibly empty) of consecutive members of some set $\mathcal{A} \in \Omega$. If $\mathcal{A} \neq \mathcal{B}$ and \mathcal{A} and \mathcal{B} are in Ω, then $\mathcal{A} \cap \mathcal{B}$ is a nonempty initial segment of both \mathcal{A} and \mathcal{B}. A branch point of order k for Ω is one of the integers $\{b(k, i) : 1 \leq i \leq 2^{k-1}\}$ that is the kth term of some member of Ω. A branch of order k (or a k-branch) is an infinite increasing sequence of consecutive members of some set $\mathcal{A} \in \Omega$ whose first member is a branch point of order k. For each sequence $x = \{x_i\}$ of real numbers with finite support, let

$$\|x\| = \sup \left\{ \left[\sum_{n} \left(\sum_{i \in A(n)} x_i \right)^2 \right]^{1/2} \right\},$$

where the sup is over all finite sets $\{A(n) : 1 \leq n \leq p\}$ of pairwise disjoint segments. Let X be the completion with respect to this norm of the normed linear space X of all such sequences. Then X is a separable Banach space.

For each $\mathcal{A} \in \Omega$, define a linear functional $f_{\mathcal{A}}$ on X by letting $f_{\mathcal{A}}(x) = \sum_{i \in \mathcal{A}} x_i$ if $x \in X$, and extending to X by use of continuity. Then $\|f_{\mathcal{A}}\| = 1$.
Also, if \(m \in \mathcal{A} - \mathcal{B} \), \(n \in \mathcal{B} - \mathcal{A} \), and \(x \) is the sequence \(\{x_i\} \) with \(x_{m+1} = 1 \), \(x_n = -1 \) and \(x_i = 0 \) otherwise, then \((f_{m+1,n} - f_{m,n})(x) = 2 \) and \(\|x\| = 2^{1/2} \). Thus \(\|f_{m+1,n} - f_{m,n}\| \geq 2^{1/2} \) and \(\mathcal{X}^* \) is not separable.

Theorem. If \(\theta > \sqrt{2} \), then each infinite-dimensional subspace of \(\mathcal{X} \) contains an infinite-dimensional subspace \(\mathcal{H} \) for which there is an inner-product norm \(\| \cdot \| \) such that

\[
\|x\| \leq \|x\| \leq \theta \|x\| \quad \text{if} \ x \in \mathcal{H}.
\]

Proof. It is sufficient to prove the theorem for \(\mathcal{X} \). Let \(\mathcal{Y} \) be an infinite-dimensional subspace of \(\mathcal{X} \) and let \(\mathcal{Y}^k \) be the subspace of \(\mathcal{Y} \) whose members are zero at each of the finite set of branch points with order less than \(k \). Then \(\mathcal{Y}^k \) has finite codimension as a subspace of \(\mathcal{X} \). For each \(x \) in \(\mathcal{X} \), let

\[
[x]_k = \sup \left\{ \left(\sum_{\ell \in \mathcal{B} \cap (m, n)} x_{m}^\ell \right)^{1/2} \right\},
\]

where the sup is over all sets \(\{\mathcal{B} \cap (m, n)\} \) of pairwise disjoint \(k \)-branches. Let

\[
\omega = \lim \inf_{k \to \infty} \{[x]_k : x \in \mathcal{Y}^k \text{ and } \|x\| = 1\}.
\]

It will be shown that \(\omega = 0 \). Suppose \(\omega > 0 \). For \(\varepsilon > 0 \), choose \(K \) so that

\[(1) \quad \inf \{[x]_k^2 : x \in \mathcal{Y}^k \text{ and } \|x\| = 1\} > \omega^2 - \varepsilon \quad \text{if} \ k \geq K.
\]

Choose an increasing sequence of integers \(\{m(k)\} \) with \(m(1) = K \), and then a sequence \(\{y^k\} \) in \(\mathcal{X} \) such that, for each \(k \), \(\|y^k\| = 1 \), \(y^k \) has nonzero terms only at branch points with orders in the interval \([m(k) - 1, m(k)] \), and

\[(2) \quad [y^k]_{m(k)}^2 < \omega^2 + \varepsilon.
\]

It will be shown that a contradiction is obtained if \(\varepsilon \) is sufficiently small. Let \(y^k = \{y^k_i\} \). Since \([y^k]_i^2 \geq \omega^2 - \varepsilon \) and \(y^k \in \mathcal{Y}^{m(k)} \), there are \(2^{K-1} \) branch points of order \(m(k) \), which will be denoted by \(\{b(k, p_i^k) : 1 \leq i \leq 2^{K-1} \} \) rather than using \(b(m(k), p_i^k) \), and \(2^{K-1} \) branches \(\{B(k, p_i^k) : 1 \leq i \leq 2^{K-1} \} \) of order \(m(k) \) starting at these branch points, such that

\[(3) \quad \sum_{i} \left(\sum_{\ell \in B(k, p_i^k)} y^k_{\ell} \right)^2 > \omega^2 - \varepsilon.
\]

Now for each \(i, k \) and \(\kappa \) with \(i \leq 2^{K-1} \) and \(\kappa < \kappa \), let \(\sigma(k, \kappa; i) \) be \(j \) if there exists \(j \leq 2^{K-1} \) such that \(b(k, p_j^k) \) and \(b(\kappa, p_j^\kappa) \) are on the same \(K \)-branch. Then \(\sigma(k, \kappa; i) \) is strictly increasing as a function of \(i \) and determines a one-to-one mapping of a subset of \(\{p_i^k : i \leq 2^{K-1} \} \) onto a subset of \(\{p_i^\kappa : i \leq 2^{K-1} \} \). Choose a sequence of positive integers \(I_1 \) so that if \(k \) and \(\kappa \) are in \(I_1 \) and \(\kappa < \kappa \), then \(\sigma(k, \kappa; i) = \sigma(k; i) \) is independent of \(\kappa \) for each \(i \).
Then choose a subsequence I_2 of I_1 so that if $k \in I_2$ then $\sigma(k; i) = \sigma(i)$ is independent of k for each i. Now, $\sigma[\sigma(i)] = \sigma(i) = i$ and, for each $i \leq 2^{K-1}$, either i is in the domain of σ and there is a K-branch that contains all $b(k, p_i^k)$ for $k \in I_2$, or i is not in the domain of σ and no K-branch that contains $b(k, p_i^k)$ for some $k \in I_2$ can contain any $b(\kappa, p_i^k)$ for $\kappa \neq k$ and $\kappa \in I_2$.

Now choose a subsequence I_3 of I_2 such that, for each i in the domain of σ and any two members k and κ of I_3,

\[
\left| \sum_{i \in B} y_i^k - \sum_{i \in B} y_i^\kappa \right| < 2^{-K/2} \varepsilon,
\]

where B is the K-branch containing all $b(k, p_i^k)$ for $k \in I_3$. For a λ to be chosen later, let $\{\mu(j): 1 \leq j \leq \lambda\}$ be any λ consecutive members of I_3 and, for any K-branch B, consider

\[
\left[\sum_{i \in B} \left(\frac{1}{2} \right)^j y_i^{\mu(j)} \right]^2 = \left[\sum_{i \in B} \left(\frac{1}{2} \right)^j \left(\sum_{i \in B} y_i^{\mu(j)} \right) \right]^2.
\]

For each $\mu(j)$, let $\sum_{i \in B} y_i^{\mu(j)}$ be denoted by $\rho_B^{\mu(j)}$ or $\Delta_B^{\mu(j)}$ accordingly as B contains one of the branch points $\{b[\mu(j), p_i^{\mu(j)}]\}$ or B does not contain any such branch point. Then either there exists $\iota \leq 2^{K-1}$ and $\kappa > 0$ such that B contains $\{b(\mu(j), p_i^{\mu(j)}): j \leq \kappa\}$ and B contains no other $b(\mu(j), p_i^{\mu(j)})$ for $\kappa < j \leq \lambda$ and $i \leq 2^{K-1}$, or else B contains at most one of $\{b[\mu(j), p_i^{\mu(j)}]: 1 \leq j \leq \lambda, i \leq 2^{K-1}\}$. For any real numbers $\{a_i\}$,

\[
\left(\sum_{i=1}^{n} a_i \right)^2 \leq \sum_{i=1}^{n} 2^a_i^2.
\]

Therefore it follows from (4) that the expression (5) is not greater than

\[
2(\rho_B^\iota)^2 + 4 \left(\frac{K}{2} \right) 2^{-K/2} \varepsilon^2 + \sum_{j=1}^{\lambda} e_j 2^j (\Delta_B^{\mu(j)})^2,
\]

where $\mu \in \{\mu(j): j \leq \lambda\}$ (except that the first term in (7) may be missing), κ is the largest integer such that $\kappa \leq \lambda$ and B contains $b(\mu(j), p_i^{\mu(j)})$ for some i and for all $j \leq \kappa$, and each e_j is 0 or 1. Note that if we sum terms of type $(\Delta_B^{\mu(j)})^2$ over any 2^{K-1} pairwise disjoint K-branches $B(n)$, then it follows from (2) and (3) that this sum is not greater than 2ε; also, there are then at most 2^{K-1} terms of the type of the first term in (7), so these can contribute to $[\sum_{j=1}^{\lambda} (\Delta_B^{\mu(j)})^2]$ for at most 2^{K-1} values of j. Therefore the sum of (5) or (7) over any 2^{K-1} pairwise disjoint K-branches is not greater than

\[
2 \cdot 2^{K-1} (\omega^2 + \varepsilon) + 4[\lambda/2] \varepsilon^2 + \lambda \cdot 2^\lambda (2\varepsilon) \leq 2^K \omega^2 + \varepsilon(2^K + \lambda \cdot 2^{\lambda+1}) + 2\lambda e_3.
\]
Since \(\| \sum_{i=1}^{4} (-1)^{i} y^{w(i)} \|^{2} \geq \lambda \), this contradicts (1) if

\[
2^{K} \omega^{2} + \epsilon(2^{K} + \lambda \cdot 2^{\lambda+1}) + 2\lambda\epsilon^{2} < \lambda(\omega^{2} - \epsilon).
\]

This inequality can be satisfied by choosing \(\lambda > 2^{K} \) and then choosing \(\epsilon \) small enough.

This concludes the proof that \(\omega = 0 \). Since \(\omega = 0 \), we can let \(\epsilon \) be a positive number and choose an increasing sequence of integers \(\{n(k)\} \) and a sequence \(\{y^{k}\} \) in \(X \), such that, for each \(k \), \(\|y^{k}\| = 1 \), \(y^{k} \) has nonzero terms only at branch points with orders in the interval \((n(k), n(k+1)) \), and

\[
[y^{k}]_{n(k)}^{2} < 2^{-k}\epsilon^{2}.
\]

Let \(\{a_{i}\} \) be a finite sequence of real numbers with \(\sum a_{i}^{2} > 0 \). Then \(\| \sum a_{i}y^{j} \|^{2} \geq \sum a_{i}^{2} \). Choose a finite set \(\{A(n) : 1 \leq n \leq p\} \) of pairwise disjoint segments such that

\[
\| \sum a_{i}y_{i} \|^{2} = \sum_{n} \left(\sum_{i \in A(n)} \sum a_{i}y_{i} \right)^{2}.
\]

If \(A \) is any of these segments, then \(A \) is the union of an initial and a terminal segment, each of which contains a part of the piece of a branch between branch points of order \(n(j) \) and branch points of order \(n(j+1) \) for some \(j \), and several interior segments, each of which has the property that there is a \(j \) such that the segment contains all of the piece of a branch between branch points of order \(n(j) \) and branch points of order \(n(j+1) \). A sum \(\sum_{i} a_{i}y_{i}^{j} \) over those \(i \) in an initial segment or a sum over those \(i \) in a terminal segment contributes only to the norm of the corresponding \(a_{i}y_{i}^{j} \), while a sum over an interior segment contributes to \([a_{i}y_{i}^{j}]_{n(i)} \) only. Now we can use the fact that

\[
(a + b + c)^{2} \leq (2 + \epsilon)(a^{2} + b^{2}) + (1 + 2\epsilon)c^{2}
\]

for any real numbers \(a, b, c, \) and then (6) and (8), to obtain

\[
\| \sum a_{i}y_{i} \|^{2} \leq (2 + \epsilon) \sum a_{i}^{2} + \left(1 + \frac{2}{\epsilon} \right) \sum_{j} 2^{j}a_{j}^{2}[y_{j}]_{n(i)}^{2} < (2 + \epsilon) \sum a_{i}^{2} + (2\epsilon + \epsilon^{2}) \sum_{j} a_{j}^{2} = (2 + 3\epsilon + \epsilon^{2}) \sum a_{j}^{2}.
\]

Since \(\epsilon \) was arbitrary, for any \(\theta > \sqrt{2} \) there is an infinite sequence \(\{y^{k}\} \) of members of \(X \) such that, for all sequences \(\{a_{i}\} \) of real numbers,

\[
(\sum_{1}^{\infty} a_{i}^{2})^{1/2} \leq \| \sum_{1}^{\infty} a_{i}y_{i} \| \leq \theta \left(\sum_{1}^{\infty} a_{i}^{2} \right)^{1/2}.
\]
ERRATUM ADDED IN PROOF. The sequences \{m(k)\} and \{y^k\} should be chosen simultaneously so that each \(y^k\) is in \(Y\) and the branches \(\{B(k, y^k)\}: 1 \leq i \leq 2^{K-1}\) are pieces of pairwise disjoint \(K\)-branches; \(\mu(j): 1 \leq j \leq \lambda\) should not be consecutive members of \(I_3\), but chosen so that, for each branch point \(b\) of order \(K\),

\[
\sup \left\{ \left[\sum_{i \in B} y^\mu(i) \right]^2 \right\} < \sup \left\{ \left[\sum_{i \in B} y_i^\mu(1) \right]^2 \right\} + 2^{1-K} \varepsilon,
\]

where \(1 \leq j \leq \lambda\) and \(B\) is any \(K\)-branch containing \(b\). In the first term of (7), \(\rho^\mu_B\) should be replaced by the sum of the absolute values of two such terms; in the next two inequalities, \(2^K(\omega^2 + \varepsilon)\) can now be replaced by \(8\omega^2 + 16\varepsilon\) and \(\lambda\) need not depend on \(K\).

REFERENCES

DEPARTMENT OF MATHEMATICS, CLAREMONT GRADUATE SCHOOL, CLAREMONT, CALIFORNIA 91711