A NEW COMPARISON THEOREM FOR
SCALAR RICCATI EQUATIONS

BY R. A. STAFFORD AND J. W. HEIDEL

Communicated by Fred Brauer, November 20, 1973

Consider the Riccati equation

\[\dot{r} + r^2 + q_1(t) = 0 \]

where \(q_1(t) \) is continuous on some interval \([a, b)\) with \(0 < a < b \leq \infty \). The problem is to find conditions on \(q_1(t) \) under which (1) will or will not have a solution existing on \([a, b)\). This is equivalent to the disconjugacy problem for \(\ddot{y} + q_1(t)y = 0 \) via \(r(t) = \dot{y}(t)/y(t) \). Here we announce a comparison theorem which relates the existence of a solution of (1) to the existence of a solution of another equation,

\[\ddot{s} + s^2 + q_2(t) = 0. \]

Specific criteria are then obtained by choosing \(q_1 \) or \(q_2 \) so that a solution of (1) or (2) can be exhibited.

The basic idea is exposed by proving a simple form of the theorem. Examples and the relation to other comparison theorems will then be discussed. A generalization and further examples are considered in [5]. Extension to matrix Riccati equations is given in [3].

Theorem 1. Suppose that \(q_1 \) and \(q_2 \) are continuous and nonnegative on \([a, b)\) where \(0 < a < b \leq \infty \) and that \(\int_a^b r^2 q_2(\tau) \, d\tau \leq \int_a^b r^2 q_1(\tau) \, d\tau, t \geq a \). If (1) has a solution \(r(t) \) on \([a, b)\) and \(ar(a) < 1 \), then (2) has a solution on \([a, b)\).

Proof. The substitutions \(u(t) = tr(t) \) and \(v(t) = ts(t) \) transform (1) and (2) into

\[t\ddot{u} = u - u^2 - t^2q_1, \]

\[t\ddot{v} = v - v^2 - t^2q_2 \]

respectively. We have \(u(a) = ar(a) < 1 \). Choose a solution \(v(t) \) of (4) such that \(u(a) < v(a) < 1 \). It will be shown that \(v(t) \) exists on \([a, b)\).

AMS (MOS) subject classifications (1970). Primary 34A30, 34C05.
Key words and phrases. Riccati equation, comparison theorem, disconjugacy.

\(^1\) Supported in part by NSF GP 39113 and by 141052 2350 R95.

Copyright © American Mathematical Society 1974

754
First of all it is asserted that \(v(t) \leq 1 \) for \(t \geq a \) (as long as \(v \) exists). This follows immediately from (4) by noting that \(\dot{v} \leq 0 \) if \(v \geq 1 \).

It is now asserted that \(v(t) > u(t) \) for \(t \geq a \) (as long as \(v \) exists). To see this integrate by parts the left-hand sides from \(a \) to \(t \) and subtract (4) from (3) to obtain

\[
v(t) - u(t) = \frac{a}{t} (v(a) - u(a)) + \frac{1}{t} \int_a^t \left\{ (2v(\tau) - v^2(\tau)) - (2u(\tau) - u^2(\tau)) \right\} d\tau + \frac{1}{t} \left[\int_a^t \tau^2 q_1(\tau) d\tau - \int_a^t \tau^2 q_2(\tau) d\tau \right].
\]

(5)

Suppose that \(v(t_1) = u(t_1) \) for some \(t_1 > a \) and that \(u(t) < v(t) \) for \(a \leq t < t_1 \). Replacing \(t \) by \(t_1 \) in (5) the first term on the right-hand side is positive and the last term is nonnegative. To examine the middle term consider the function \(h(u) = 2u - u^2 \). Its maximum occurs at \(u = 1 \) and \(h'(u) > 0 \) for \(u < 1 \). Since \(u(\tau) \leq v(\tau) \leq 1 \) for \(a \leq \tau \leq t_1 \), it follows that \(2u(\tau) - u^2(\tau) < 2v(\tau) - v^2(\tau) \) for \(a \leq \tau \leq t_1 \). Thus the second term on the right-hand side is also nonnegative which contradicts \(v(t_1) - u(t_1) = 0 \).

It has been shown that \(u(t) < v(t) \leq 1 \) as far as \(v \) exists. Thus \(v \) exists on \([a, b)\).

Example 1. Setting \(q_1(t) = 1/(4t^2) \) we have \(r(t) = 1/(2t) \) and \(tr(t) = \frac{1}{2} \). The integral criterion becomes

\[
\frac{1}{t-a} \int_a^t \tau^2 q_2(\tau) d\tau \leq \frac{1}{4}.
\]

\(q_2(t) = 1/(4t^2) \) \([1 - \sin(t-a)]\) provides a simple explicit example which satisfies this integral condition for all \(t \geq a \).

Example 2. More generally it can be shown that \(f(t) + (k/t^2)(1 + f(t))y = 0 \) where \(f(t) \geq -1 \), continuous, periodic of period \(\omega \), and \(\int_a^{\omega+a} f(t) \, dt = 0 \), is disconjugate on \([a, \infty)\) if \(k \leq \frac{1}{2} \) and oscillatory on \([a, \infty)\) if \(k > \frac{1}{2} \).

It is interesting to compare the above theorem with other comparison theorems.

Sturm's Comparison Theorem [6]. If \(q_2(t) \leq q_1(t) \) on \([a, b)\) and (1) has a solution on \([a, b)\) then (2) has a solution on \([a, b)\).

Hille's Comparison Theorem [2] (As generalized by Hartman [1, p. 369]). If \(b = \infty \),

\[
\left| \int_t^\infty q_2(\tau) d\tau \right| \leq \int_t^\infty q_1(\tau) d\tau, \quad t \geq a,
\]

and (1) has a solution on \([a, b)\) then (2) has a solution on \([a, b)\).
Levin's comparison theorem [4]. If

$$\left| \int_{a}^{t} q_2(\tau) \, d\tau - s_0 \right| \leq \int_{a}^{t} q_1(\tau) \, d\tau - r(a)$$

where \(r(t) \) is a solution of (1) on \([a, b)\), then the solution \(s(t) \) of (2) with \(s(a) = s_0 \) exists on \([a, b)\).

We note that none of these three theorems can handle the \(q_2 \) in Example 1. This is immediately clear for Sturm's theorem and Hille's theorem. In the case of Levin's theorem we see that \(r(a) \leq 0 \) so that \(r(t) \) has finite escape time and hence the theorem does not give a result on \([a, \infty)\).

Wong [7] has a comparison theorem which, like Hille's theorem, involves integrals on \([t, \infty)\) and does not apply to the above example. The authors are not aware of any other comparison theorems for disconjugacy.

We now state a result which generalizes Theorem 1 in two directions.

Theorem 2 [5]. Suppose there exists a continuous function \(\mu \) on \([a, b)\) such that \(\mu(t) > 0 \) and

$$\int_{a}^{t} \mu^2(\tau) q_2(\tau) \, d\tau \leq \int_{a}^{t} \mu^2(\tau) q_1(\tau) \, d\tau, \quad t \geq a.$$

If (1) has a solution \(r(t) \) on \([a, b)\), \(\mu(t)r(t) \leq \mu(t) \) and

$$2\mu + 2(\mu - \mu r)q_1 + \mu q_1 + \mu q_2 \geq 0, \quad t \geq a,$$

then (2) has a solution on \([a, b)\).

Example 3. Let \(\mu(t) = t \) and \(q_1(t) = 1/(4t^2) \). Then (6) becomes \(-3/4t^2 \leq q_2(t)\) which relaxes the nonnegativity condition of Example 1.

Example 4. If \(q_2(t) \geq 0 \) and continuous on \([a, b)\), \(\gamma \geq \frac{1}{4} \) and

$$\int_{a}^{t} \tau^2 q_2(\tau) \, d\tau \leq \frac{1}{4(2\gamma - 1)} (t^{2\gamma - 1} - a^{2\gamma - 1}), \quad t \geq a,$$

then (2) has a solution on \([a, b)\).

In conclusion it is interesting to note that the differential equation (3), used in the proof of Theorem 1, is the differentiated form of the integral equation used by Hille to derive his comparison theorem. Another curious relation in this regard is the identity

$$\frac{1}{t} \int_{0}^{t} \tau^2 q(\tau) \, d\tau + t \int_{t}^{\infty} q(\tau) \, d\tau = \frac{2}{t} \int_{t}^{\infty} \int_{t}^{\infty} q(\xi) \, d\xi \, d\tau$$

which holds for every continuous function \(q(t) \) on \([0, \infty)\) such that \(\int_{0}^{\infty} q(\tau) \, d\tau < \infty \).
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916