Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A new comparison theorem for scalar Riccati equations


Authors: R. A. Stafford and J. W. Heidel
Journal: Bull. Amer. Math. Soc. 80 (1974), 754-757
MSC (1970): Primary 34A30, 34C05
DOI: https://doi.org/10.1090/S0002-9904-1974-13588-3
MathSciNet review: 0342771
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Philip Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 171038
  • 2. Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252. MR 10, 376. MR 27925
  • 3. R. A. Jones, Existence theorems for matrix Riccati equations, Ph.D. Dissertation, University of Tennessee, 1973.
  • 4. A. Ju. Levin, A comparison principle for second-order differential equations, Dokl. Akad. Nauk SSSR 135 (1960), 783-786=Soviet Math. Dokl. 1 (1960), 1313-1316. MR 23#A1875. MR 124563
  • 5. R. A. Stafford, Existence criteria for scalar Riccati equations, Ph.D. Dissertation, University of Tennessee, 1974.
  • 6. C. Sturm, Sur les équations différentielles lineares du second ordre, J. Math. Pures Appl. 1 (1836), 106-186.
  • 7. James S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197-215. MR 40 #4536. MR 251305

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 34A30, 34C05

Retrieve articles in all journals with MSC (1970): 34A30, 34C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13588-3

American Mathematical Society