A well-posed problem for the heat equation

Author:
Thomas I. Seidman

Journal:
Bull. Amer. Math. Soc. **80** (1974), 901-902

MSC (1970):
Primary 35K05, 93B05

DOI:
https://doi.org/10.1090/S0002-9904-1974-13564-0

MathSciNet review:
0417571

Full-text PDF

References | Similar Articles | Additional Information

**1.**H. O. Fattorini and D. L. Russell,*Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations*, Quart. Appl. Math. (to appear). MR**510972****2.**V. J. Mizel and T. I. Seidman,*Observation and prediction for the heat equation*, J. Math. Anal. Appl. 28 (1969), 303-312. MR 40 #569. MR**247301****3.**V. J. Mizel and T. I. Seidman,*Observation and prediction for the heat equation*. II, J. Math. Anal. Appl. 38 (1972), 149-166. MR**303081****4.**D. L. Russell,*A unified boundary value control theory for hyperbolic and parabolic partial differential equations*, Studies in Appl. Math. (to appear). MR**341256****5.**D. L. Russell,*Exact boundary value controllability theorems for wave and heat processes in star-complemented regions*(to appear). MR**467472**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
35K05,
93B05

Retrieve articles in all journals with MSC (1970): 35K05, 93B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1974-13564-0