SOME EXAMPLES OF SPHERE BUNDLES OVER SPHERES WHICH ARE LOOP SPACES \(\mod p \)

BY JOHN EWING

Communicated by Morton Curtis, March 26, 1974

ABSTRACT. In this note we give sufficient conditions that certain sphere bundles over spheres, denoted \(B_n(p) \), are of the homotopy type of loop spaces \(\mod p \) for \(p \) an odd prime. The method is to construct a classifying space for the \(p \)-profinite completion of \(B_n(p) \) by collapsing an Eilenberg-Mac Lane space by the action of a certain finite group.

We say that a space \(X \) has some property \(\mod p \) if the localization of \(X \) at \(p \) has the property. The problem of determining which spheres are of the homotopy type of loop spaces \(\mod p \) has been completely solved by Sullivan [9]. It is therefore natural to ask which sphere bundles over spheres are of the homotopy type of loop spaces \(\mod p \). In this regard, results of Curtis [2] and Stasheff [7] concerning the question of which sphere bundles over spheres are \(H \)-spaces \(\mod p \) give some negative information. Moreover, in a recent paper [3] we investigated a certain class of sphere bundles over spheres and gave necessary conditions for them to be of the homotopy type of a loop space \(\mod p \) for \(p \) an odd prime. In this note we prove that certain of these bundles satisfying the conditions of [3] are of the homotopy type of a loop space \(\mod p \) and answer a question posed in [8].

For \(p \) an odd prime and \(n \) a positive integer, the space \(B_n(p) \) is an \(S^{2n+1} \)-bundle over \(S^{2n+1} \) classified by the generator of the \(p \)-primary part of \(\pi_3(S^{2n+1}) \). From [5] we have that \(H^*(B_n(p); \mathbb{Z}/p) \) is an exterior algebra on generators \(x \) and \(y \), where \(\deg x = 2n+1 \), \(\deg y = 2n+2p-1 \) and \(\partial x = y \). Although few of the \(B_n(p) \) are of the homotopy type of a loop space \(\mod p \) (see [3]), we have the following exceptions.

Theorem 1. The space \(B_n(p) \) is of the homotopy type of a loop space \(\mod p \) if \(n \) and \(p \) satisfy any of the following conditions:

(i) \(n=1; p=\text{any odd prime} \),
(ii) \(n=p-2; p=\text{any odd prime} \),
(iii) \(n=7; p=17 \),
(iv) \(n=5; p=19 \),
(v) \(n=19; p=41 \).

Copyright © American Mathematical Society 1974

935
REMARK. Two cases of Theorem 1 follow immediately from [5]: namely $B_t(3)$ is of the homotopy type of $\text{Sp}(2) \text{ mod } 3$, and $B_t(5)$ is of the homotopy type of $G_2 \text{ mod } 5$.

In order to prove Theorem 1, we must introduce the p-profinite completion of a space as defined in [9]. For precise statements of some of the pertinent theorems, see [4]. If X is a space, let \hat{X}_p denote the p-profinite completion of X; for notational convenience we make the following conventions:

$$L_n(p) = \text{localization of } B_n(p) \text{ at } p.$$
$$C_n(p) = \text{p-profinite completion of } B_n(p).$$

THEOREM 2. The space $C_n(p)$ is of the homotopy type of a loop space if n and p satisfy any one of the conditions of Theorem 1.

PROOF OF THEOREM 1. Theorem 1 now follows from Theorem 2 using techniques of [9]. Suppose $C_n(p)$ is a loop space, and let $BC_n(p)$ denote the classifying space. Let W denote the homotopy pull-back in the following diagram:

$$\begin{array}{ccc}
W & \rightarrow & BC_n(p) \\
\downarrow & & \downarrow \\
K(Q, 2n + 2) \times K(Q, 2n + 2p) & \rightarrow & K(Q_p, 2n + 2) \times K(Q_p, 2n + 2p),
\end{array}$$

where Q_p denotes the p-adic numbers. Looping the diagram we conclude that $L_n(p) \simeq \Omega W$. Q.E.D.

The proof of Theorem 2 is somewhat involved and so we outline the procedure. Given n and p satisfying one of the conditions, we construct two p-profinately complete spaces, A and X, together with a map $i: A \rightarrow X$. We show $\Omega A \simeq S_{2n+1}^{\mathbb{Z}_p}$, $H^*(\Omega X; Z/p) \simeq H^*(B_n(p); Z/p)$ as modules over the Steenrod algebra, and $(\Omega i)^*: H^{2n+1}(\Omega X; Z/p) \rightarrow H^{2n+1}(\Omega A; Z/p)$ is an isomorphism. We conclude that there is a map $f: S_{2n+1} \rightarrow \Omega X$ such that $f^*: H^{2n+1}(\Omega X; Z/p) \rightarrow H^{2n+1}(S_{2n+1}; Z/p)$ is an isomorphism. From [5] we have the following cell structure for $B_n(p)$:

$$B_n(p) \cong S_{2n+1} \cup_a e^{2n+2p-1} \cup e^{4n+2p}.$$

Since \mathcal{P} is nontrivial on $H^*(\Omega X; Z/p)$, we conclude fX is null homotopic. Therefore, by proving $\pi_{4n+2p-1}(\Omega X)$ is trivial, we have shown that f extends to a map $f: B_n(p) \rightarrow \Omega X$. By functoriality of \mathcal{P} and cup products, this extension induces an isomorphism of mod p cohomology. From [9] or [4] we have that $C_n(p) \simeq \Omega X$.

In this note we give details of the construction only in the case $n=1$. The remaining cases are similar and details can be found in [4]. Let \mathbb{Z}_p denote the p-adic integers, and let θ be a primitive $(p+1)$st root of unity.
It is easily verified that $\theta + \theta^{-1}$ and $(\theta - \theta^{-1})^2$ are in \mathcal{Z}_p. Let D_{p+1} denote the dihedral group of order $2(p+1)$ in $GL(2, \mathcal{Z}_p)$ generated by

$$\frac{1}{2} \begin{pmatrix} \theta + \theta^{-1} & (\theta - \theta^{-1})^2 \\ 1 & \theta + \theta^{-1} \end{pmatrix} \text{ and } \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Let C_2 denote the cyclic group of order 2 in D_{p+1} generated by the second element above. Let $j : \mathcal{Z}_p \to \mathcal{Z}_p \times \mathcal{Z}_p$ be inclusion into the first factor. We proceed as in [1]. The natural actions of C_2 and D_{p+1} on \mathcal{Z}_p and $\mathcal{Z}_p \times \mathcal{Z}_p$ induce actions on the Eilenberg-Mac Lane spaces $K(\mathcal{Z}_p, 2)$ and $K(\mathcal{Z}_p \times \mathcal{Z}_p, 2)$. Let ED_{p+1} be an acyclic complex on which D_{p+1} acts freely, and let C_2 and D_{p+1} act on $K(\mathcal{Z}_p, 2) \times ED_{p+1}$ and $K(\mathcal{Z}_p \times \mathcal{Z}_p, 2) \times ED_{p+1}$ by diagonal actions. Let A and X denote the p-profinite completions of the respective orbit spaces. Denote by $i : A \to X$ the map induced by j. From [1] we can conclude:

$$H^*(A; \mathbb{Z}/p) \approx \mathbb{Z}/p[x], \quad \deg x = 4;$$
$$H^*(X; \mathbb{Z}/p) \approx \mathbb{Z}/p[u,v], \quad \deg u = 4, \quad \deg v = 2p + 2;$$
$$i^*(u) = x \quad \text{and} \quad \mathcal{P}^i u = v \quad \text{(see [2]).}$$

If we consider loop spaces we have correspondingly:

$$H^*(\Omega A; \mathbb{Z}/p) \approx E(\bar{x}), \quad \deg \bar{x} = 3;$$
$$H^*(\Omega X; \mathbb{Z}/p) \approx E(\bar{u}, \bar{v}), \quad \deg \bar{u} = 3, \quad \deg \bar{v} = 2p + 1;$$
$$(\Omega i)^*(\bar{u}) = \bar{v} \quad \text{and} \quad \mathcal{P}^i \bar{u} = \bar{v}. $$

Since ΩA is a simply-connected, p-profinitley complete space, we have $\Omega A \simeq S^3_p$. Therefore we get a map $f : S^3 \to \Omega X$ such that $f^*(\bar{u}) \neq 0$. From the above remarks, to extend f to $B_1(p)$ we need only show $\pi_{2p+3}(\Omega X) = 0$.

Consider the diagram:

$$\begin{array}{ccc}
\Omega X & \longrightarrow & \Omega X \\
\downarrow & & \downarrow \\
E & \longrightarrow & \Lambda X \\
\downarrow & & \downarrow \\
A & \longrightarrow & X
\end{array}$$

The pull-back E is a simply-connected p-profinitlely complete space. Moreover, we can compute $H^*(E; \mathbb{Z}/p)$ from the Eilenberg-Moore spectral sequence, which collapses [6] and gives $H^*(E; \mathbb{Z}/p)$ as an exterior algebra on a generator of degree $2p+1$. We conclude $E \simeq S^2_{2p+1}$. Since $\pi_{2p+4}(A) \approx \pi_{2p+3}(S^3_p) = 0$ and $\pi_{2p+3}(S^2_{2p+1}) = 0$, we have $\pi_{2p+3}(\Omega X) = 0$.

Therefore, f extends to a map $f : B_1(p) \to \Omega X$ which induces an isomorphism on mod p cohomology. We conclude that $C_1(p) \simeq \Omega X$.

REFERENCES

DEPARTMENT OF MATHEMATICS, DARTMOUTH COLLEGE, HANOVER, NEW HAMPSHIRE 03755

Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47401