ON THE EXTENSION OF BOUNDARY INTEGRABLE ALMOST COMPLEX STRUCTURE

BY GARO K. KIREMIDJIAN

Communicated by I. M. Singer, March 6, 1974

1. Introduction. Let \(\{M, M'\} \) be a finite Kähler manifold, i.e., \(M' \) is a complex Kähler manifold, \(M \) is an open submanifold of \(M' \) with compact closure, \(M_0 = bM \), the boundary of \(M \), is a \(C^\infty \) submanifold of \(M' \), and for each \(p \in M_0 \) there exists a coordinate neighborhood \(U \) of \(p \) with real coordinates \(t^1, \ldots, t^{2n-1}, r \) such that \(r(q) < 0 \) for \(q \in U \cap M \) and \(r(q) > 0 \) for \(q \in U \cap (M' - M) \). It is assumed that the following conditions hold:

A. For each boundary point the Levi form has at least two positive eigenvalues.

B. There exists a constant \(c_0 > 0 \) such that for all \(u \in C^0(M_0) \), \(q=1, 2 \) \((2\square - \triangle) u, u \geq c_0 (u, u)\) where \(\Theta \) is the holomorphic tangent bundle of \(M' \), \(C^{0,q}(M, \Theta) \) is the space of all \(C^0 \) \(\Theta \)-valued \((p, q)\)-forms extendible to a neighborhood of \(M \), \(\square \) (resp., \(\triangle \)) is the complex (resp., the real) Laplacian on \(C^{p,q}(M, \Theta) \) and \((,)\) is the \(L^2 \)-inner product over \(M \) (see [2]).

Then the main result of this note states that a sufficiently small integrable almost-complex structure on \(M_0 \) can be extended to a complex structure on \(M \). A complete proof will appear elsewhere; a brief outline follows.

However, we first take a closer look at condition B. Let \(D \) be the covariant differentiation operator associated with the connection \(\theta \) of the metric \(g \) on \(M' \), i.e.,

\[
Du = d\theta + \theta \wedge u = \delta u + \delta u
\]

for \(u \in C^{p,q}(M, \Theta) \). Let \(D^* \) and \(\delta^* \) be the formal adjoints of \(D \) and \(\delta \), respectively. Then \(\triangle = DD^* + D^*D \) and \(\square = \delta \delta^* + \delta^* \delta \). Since \(g \) is Kähler, \(\triangle = 2\square - K \), \(K = \sqrt{-1} e(\delta \Lambda - \Lambda e(\delta)) \), where

\[
e(\delta) u = \delta \theta \wedge u, \quad \Lambda u = \star^{-1}(\rho \wedge \star u),
\]

\(\star \) is the Hodge star operator and \(\rho \) is the Kähler form of \(g \). We refer

\(^1 \) This research was supported in part by NSF grant GP 33942X1.
to [3, pp. 482-483], for verification of this identity. Hence, condition B requires the existence of a constant \(c_0 > 0 \) such that \((Ku, u) \geq c_0(u, u) \) for all \(u \in C^{0,q}(\mathcal{M}, \Theta) \), \(q = 1, 2 \). Now it is established in [2, p. 276], that if the scalar curvature is sufficiently negative, then one has the stronger result \((Ku, u) \geq c_0(u, u) \) for all \(x \in M' \), where \(\langle , \rangle_x \) is the inner product at the point \(x \), i.e., \(\Theta \) is \(W^{0,q} \)-elliptic. It is also shown in [2] that the criterion of \(W \)-ellipticity is satisfied for a large class of bounded homogeneous domains in \(C^n \) provided with the Bergman metric. More generally, let \(M' \) be a manifold whose universal covering space \(M' \) is isomorphic to \(D_1 \times \cdots \times D_r \), where \(D_i \) is a bounded irreducible symmetric domain with \(\dim C D_i \geq 3 \). Then \(\Theta \) is \(W^{0,q} \)-elliptic for \(0 \leq q \leq 2 \), and condition B will hold for any relatively compact open submanifold \(M' \) of \(M \) with smooth boundary.

2. Definitions and notation. Let \(M_0 \) be a \(C^\infty \) manifold of real dimension \(2n-1 \) and let \(CTM_0 \) be the complexified tangent bundle.

2.1. Definition. An almost-complex structure on \(M_0 \) is given by a complex subbundle \(E'' \) of \(CTM_0 \) of fiber complex dimension \(n-1 \) such that \(E'' \cap E'' = \{0\} \).

2.2. Definition. The almost-complex structure \(E'' \) on \(M_0 \) is integrable if, for any two sections \(L \) and \(L' \) of \(E'' \) over an open set \(U \) of \(M_0 \), \([L, L']\) is also a section of \(E'' \).

We now assume that \(M_0 \) is the boundary of a finite complex manifold \(\{M, M'\} \). The complex structure on \(M' \) induces an integrable almost-complex structure \(T'' \) on \(M_0 \).

2.3. Definition. The almost-complex structure \(E'' \) on \(M_0 \) is of finite distance from \(T'' \) if \(\pi''|E'':E'' \to T'' \) is an isomorphism where \(\pi'':CTM_0 \to T'' \) is the projection.

In this case \(E'' = \{X-\tau \circ \varphi(X)|X \in T''\} \) where \(\tau: \Theta|M_0 \to T' \oplus CF \) is an isomorphism, \(T'' = T' \), \(CF \) is the complexification of a real one-dimensional subbundle \(F \) of \(TM_0 \) such that \(CTM_0 = T'' \oplus T'' \oplus CF \) and

\[
\varphi = -\pi^{-1} \circ (id - \pi'') \circ (\pi''E'')^{-1}: T'' \to \Theta \big| M_0,
\]

i.e., \(\varphi \) is a \(\Theta|M_0 \)-valued \(C^\infty \) differential form on \(M_0 \) of type \((0, 1)_b\). Conversely, any such differential form \(\varphi \) gives rise to an almost complex structure \(E'' \) on \(M_0 \). We will denote \(E'' \) by \(T'_{\varphi} \). As in the case of complex manifolds, there exists a \(\Theta|M_0 \)-valued \(C^\infty \) differential form \(\Phi \) on \(M_0 \) of type \((0, 2)_b \) such that \(\Phi = 0 \) if and only if \(T'_{\varphi} \) is integrable.

Let \(\varphi \) be a \(T' \)-valued form and let \(\omega \in C^{0,1}(\mathcal{M}, \Theta) \) be such that \(t \omega \), the complex tangential part of \(\omega \), is equal to \(\varphi \) on \(M_0 \). Let \(\Omega = \delta \omega - [\omega, \omega] \). If \(T''_{\omega} \) is the almost complex structure on \(M \) induced by \(\omega \), then one can show that \(T''_{\omega} = CTM_0 \cap T''_{\omega} \) and \(t \Omega = 0 \) on \(M_0 \) if and only if \(\Phi = 0 \).
3. The main result. Now we can formulate the following extension problem.

THEOREM. Let \(\{M, M'\} \) be a finite complex Kähler manifold such that conditions A and B in §1 are satisfied. Let \(\varphi \) be a \(T' \)-valued \(C^\infty \) differential form of type \((0, 1)_b \) with sufficiently small Hölder norm \(|\varphi|_{k+\alpha}, 0<\alpha<1 \), for some integer \(k>0 \) depending on \(n \). Assume that \(T'_\varphi \) is integrable. Then there exists \(\omega \in C^{0,1}(\overline{M}, \Theta) \) such that \(\Omega=0 \) and \(\omega=T'_\varphi \) on \(M_0 \).

We first consider the quadratic form

\[
Q(u, v) = \frac{1}{2}[(D_u, D_v) + (D^*u, D^*v) + (K_u, v)] - 2([\psi, u], \delta v)
\]

for some \(\psi \in C^{0,1}(\overline{M}, \Theta) \) with sufficiently small norm and \(u, v \in \mathcal{B} = \{\omega \in C^{0,1}(\overline{M}, \Theta)|\omega_0=0 \text{ on } M_0\} \). One can easily check that by condition B, \(\text{const} N^2(u) \leq |\text{Re } Q(u, u)| \leq \text{const} N^2(u) \) where \(\text{Re} \) stands for the real part of \(Q(u, u) \), and \(N^2(u)=\|u\|^2+\|Du\|^2+\|D^*u\|^2 \). Hence, if \(\|u\|_s \) is the Sobolev \(s \)-norm of \(u \), then \(\|u\|_1 \leq \text{const} |\text{Re } Q(u, u)| \).

It follows from the theory developed in [1] and [4] that for each \(\sigma \in C^{0,1}(\overline{M}, \Theta) \) there exists a unique \(u \in \mathcal{B} \) such that \(Q(u, v)=(\sigma, v) \) for all \(v \in \mathcal{B}_\Sigma \), the completion of \(\mathcal{B} \) with respect to the norm \(N \) such that

\[
\begin{align*}
(1) & \quad \|u\|_{s+2} \leq c_s \|\sigma\|_s; \\
(2) & \quad L_\psi u = \frac{1}{2}(DD^* + D^*D + K)u - 2\delta^*[\psi, u] = \sigma; \\
(3) & \quad tD^*u = 0 \quad \text{on } M_0; \\
(4) & \quad |u|_{k+\alpha+2} \leq c_k \|\psi\|_{k+\alpha}
\end{align*}
\]

for sufficiently large \(k \). The constants \(c_s \) and \(c_k \) depend on \(s \) and \(k \) and on the derivatives of \(\psi \) up to order \(s \) and \(k \), respectively. If \(|\psi|_{k+\alpha} \) is sufficiently small we may assume that \(c_k \) in (4) depends only on \(k \).

We observe that \(D^*u=-\Delta^* u=\Delta^* u \), and since \(u \) is a form of type \((0, 1)_b \), \(\Delta^* u=0 \) and \(D^*u=\delta^* u \). On the other hand for a Kähler metric \(g \) the complex Laplacian \(\Delta=\delta^* \delta + \delta \Delta \) is \(\frac{1}{2}(DD^* + D^*D + K) \), and if \(\sigma=\delta^* h \) for \(h \in C^{0,2}(\overline{M}, \Theta) \), then (3) and Stokes' theorem imply that

\[
L_\psi u = \sigma \text{ if and only if } \Delta\delta u = 2\delta^*[\psi, u] = \delta^* h.
\]

We now consider the nonlinear differential system \(\delta^* \Omega=0 \). Let \(\omega_0 \in C^{0,1}(\overline{M}, \Theta) \) be an extension of \(\varphi \) such that \(|\omega_0|_{k+\alpha} \leq \text{const} |\varphi|_{k+\alpha} \). One can inductively construct a sequence of approximate solutions \(\omega_{m+1}=\omega_m+u_m \), where \(u_m \) is the solution of (5) with \(tu_m=t\delta^* u_m=0 \) on \(M_0 \), \(\psi=\omega_m \), \(h=-\Omega_m=-\delta \omega_m+[\omega_m, \omega_m] \). Since \(|\delta^* \Omega_m|_{k+\alpha} \leq \text{const} |u_m|_{k+\alpha} \), (4) implies that there exists a constant \(c>0 \) such that

\[
|\omega_{m+1} - \omega_m|_{k+\alpha} \leq c |\omega_m - \omega_{m-1}|_{k+\alpha}.
\]
for $m=1, 2, \cdots$. This is enough to conclude that there exists a Θ-valued form ω of type $(0, 1)$ and of class C^{k+a} on M such that $\bar{\partial}\omega = \varphi$ on M_0, and $|\omega|_{k+a} \leq \text{const} |\varphi|_{k+a}$.

Now it can easily be shown that $\bar{\partial}\Omega = 2[\omega, \Omega]$. By condition A and the fact that the normal part of $\bar{\partial}\Omega$ vanishes on M_0, the basic estimate of the $\bar{\partial}$-Neumann problem holds for $\bar{\partial}\Omega$, i.e.,

$$E(\bar{\partial}\Omega) \leq \text{const}(\|\Omega\|^2 + \|\bar{\partial}\Omega\|^2 + \|\bar{\partial}\omega\|^2).$$

For the definition of the norm E, we refer to [5] and [6]; the operators $*$ and $\#$ are defined in [2]. Then by condition B and the complete continuity of E, one can obtain the estimate $\|\bar{\partial}\Omega\| \leq c_0|\varphi|_{k+a} \|\bar{\partial}\omega\|$ for some constant c_0. Thus $\bar{\partial}\Omega = 0$ if $|\varphi|_{k+a}$ is sufficiently small. Since $t\Omega = 0$ on M_0, $\bar{\partial}\Omega = 0$, and $\bar{\partial}\omega = 0$, condition B implies that $\Omega = 0$.

Finally, it follows from the construction of approximate solutions that $\omega = \omega_0 + w$, where w is of class C^{k+a} and $\bar{\partial}w = 0$. Then $\bar{\partial}(\bar{\partial}\omega - [\omega, \omega]) = 0$ can be expressed as

$$\Box w - \bar{\partial}((2[\omega_0, w] + [w, w]) = \bar{\partial}((\omega_0, \omega_0) - \omega_0).$$

This equation is elliptic if $|\varphi|_{k+a}$ is sufficiently small. Since ω_0 is of class C^∞, w is also of class C^∞.

REFERENCES