RADICAL EMBEDDING, GENUS, AND TOROIDAL DERIVATIONS OF NILPOTENT ASSOCIATIVE ALGEBRAS

BY F. J. FLANIGAN

Communicated by Mary Gray, March 11, 1974

ABSTRACT. The author continues to discuss this problem: given a nonzero nilpotent finite-dimensional associative algebra \(N \) over the perfect field \(k \), describe the set of unital associative \(k \)-algebras \(A \) satisfying the equation \(\text{rad} A = N \), together with the "nowhere triviality" condition \(\text{Ann}_A N < N \). In this paper the Lie homomorphism \(\delta : \text{SLie} \rightarrow \text{Der}_k N \) induced by bracketing (where \(A \) has Wedderburn decomposition as semidirect sum \(S + N \)) is studied as follows: (i) the kernel and image of \(\delta \) are computed; (ii) conditioning the derivation algebra \(\text{Der}_k N \) conditions the semisimple \(S \); (iii) for instance, \(\text{Der}_k N \) solvable implies that \(S \) is a direct sum of fields; (iv) those tori in \(\text{Der}_k N \) of the form \(OS \) are characterized in terms of their 0-weightspace in \(N \).

1. Introduction. For previous discussions, see Hall [2] and Flanigan [1]. Throughout, \(N \) is a given finite-dimensional nilpotent \(k \)-algebra with \(k \) perfect. We seek those semisimple \(k \)-algebras \(S \) which satisfy the following conditions.

(1.1) DEFINITION [1]. \(N \) accepts \(S \) as a nowhere trivial Wedderburn factor if there is a unital associative \(k \)-algebra \(SA \) such that (i) \(A \cong N + S \) (Wedderburn decomposition), and (ii) \(S \cap \text{Ann}_A N = (0) \).

Note that (ii) forces \(A \) to be finite dimensional, and that \(N \neq (0) \) implies \(S \neq (0) \). In [1] we examined candidates \(S \) for acceptance by considering such invariants of \(N \) as its quotients \(N/N^i \) and its graded form \(\text{gr} N \). Now we utilize the Lie algebra \(\text{Der}_k N \) of \(k \)-algebra derivations \(N \rightarrow N \) by noting that, if \(N \) accepts \(S \) as in (1.1), then there is a Lie homomorphism

\[
\delta : \text{SLie} \rightarrow \text{Der}_k N
\]

with \(\delta(b)x = [b, x] = bx - xb \) for all \(x \) in \(N \), \(b \) in \(S \), and with the products taken in \(A \).

We are particularly interested in those \(S \) which are direct sums of fields. Reason: the center of every semisimple algebra accepted by \(N \) would be of this type. These direct sums of fields are determined by the
"genus" of N (§3). Thus, genus(N) = 0 means that the only S, commutative or not, accepted by N is essentially that obtained by the well-known process of adjoining a unity to N. In §4 we bound genus(N) in terms of the dimension of maximal tori in Der$_k N$ and from this draw consequences for S. The family of examples in §5 shows that this upper bound on genus(N) may or may not be attained for a given N, and if not, it is because there exists an abelian S_{Lie} and Lie homomorphism $S_{\text{Lie}} \rightarrow$ Der$_k N$ which is not induced by bracketing (see (1.2)) in an associative $A = N + S$. Finally, we identify those tori ("Peirce tori") in Der$_k N$ which are of the form $\delta(S_{\text{Lie}})$ in terms of the associative algebra structure of their 0-weightspaces in N (§6). The Peirce tori are those whose weight-space decomposition of N is essentially a Peirce (idempotent) decomposition in the classical sense.

It is a pleasure to acknowledge helpful conversations and correspondence with Robert Kruse, George Leger, and James Malley.

2. The Lie homomorphism δ. It often makes good sense to specify that (i) N is indecomposable (into two-sided ideals) as a k-algebra, and that (ii) the semisimple k-algebra S is split over k, that is, S is an ideal direct sum of total matrix algebras $M(r_a, k)$ of rank r_a with all entries in k. This latter is always the case if k is algebraically closed.

(2.1)Lemma. Let the nonzero indecomposable nilpotent k-algebra N accept the split semisimple $S = \bigoplus_a M(r_a, k)$, with $a = 1, \cdots, s$, as a nowhere trivial Wedderburn factor. Then the map δ of (1.2) satisfies

(i) ker(δ) is the one-dimensional Lie ideal $k\cdot 1 = k\cdot 1_S$;
(ii) if char(k) divides none of the ranks r_a, then the image of δ is isomorphic with the Lie algebra

\[
\left(\bigoplus_a \text{sl}(r_a, k) \right) \oplus \left(\bigoplus_a k\cdot e_a \right) / k\cdot 1
\]

where e_a is the unity element of $M(r_a, k)$;
(iii) S is a direct sum of copies of k, that is, all $r_a = 1$ if and only if the image of δ is a torus in Der$_k N$.

(2.2) Comments. (a) If $s \geq 2$, then ker(δ) is therefore a proper subalgebra of the center of S_{Lie};
(b) The Lie algebra $\text{sl}(r_a, k)$ consists of the matrices with trace zero;
(c) $k\cdot e_a$ is the subalgebra of scalar matrices in $M(r_a, k)$, and $1 = 1_S = e_1 + \cdots + e_s$;
(d) A torus is an abelian linear Lie algebra consisting of semisimple operators;
(e) The Lemma follows from elementary considerations of two-sided matrix actions on N. The proof does not require nilpotence of N,
but only that \(N \) be an ideal in \(A=S+N \). The Lemma is false, however, if \(N \) is itself decomposable as a direct sum of two-sided ideals.

(2.3) **Question.** If \(N \) accepts a maximal (see [1]) split \(S \), does the map \(\delta \) always send the center of \(S \) into the solvable radical of \(\text{Der}_k N \)? An affirmative answer would yield a much more severe constraint on \(S \). This would be reflected in statement (iii) of Theorem (4.1), where the integer \(t(N) \) could then be replaced by a smaller and better understood number, the dimension of a maximal torus in the solvable radical of \(\text{Der}_k N \).

3. **Genus(\(N \)) and \(t(\mathcal{N}) \).** The genus will provide a measure of the “fineness” of the Peirce decompositions which \(N \) admits.

(3.1) **Definition.** If \(N \) is a nonzero nilpotent \(k \)-algebra, then \(\text{genus}(N)=\max_x (\dim_k S_x)-1 \), where \(S=\bigoplus_1^x s \) is a direct sum of \(s \) copies of the field \(k \) accepted by \(N \) as a nowhere trivial Wedderburn factor.

Thus \(\text{genus}(N) \geq 0 \) and, if \(N=I_1 \oplus \cdots \oplus I_q \) is a decomposition into nonzero two-sided ideals, then one readily checks that \(\text{genus}(N)=q-1+\sum \text{genus}(I_i) \), and that this is \(\geq 1 \) if \(q \geq 2 \).

(3.2) **Example.** Let \(N \) be the nilpotent algebra of all strictly upper triangular \(n \) by \(n \) matrices over \(k \). Then \(\text{genus}(N)=n-1 \). See [1, (2.3)].

(3.3) **Example.** Let \(N \) be the truncated polynomial ideal generated by linearly independent (over \(k \)) noncommuting elements \(x_1, \cdots, x_m \) such that every monomial of degree \(\geq v+1 \) reduces to zero, so that \(N^+ \neq (0) \) but \(N^{v+1}=(0) \). If \(v \geq 2 \), then \(N \) is indecomposable and \(\text{genus}(N)=0 \) independent of \(m \). See [1, (2.4)].

The following invariant of \(N \) was introduced by Leger and Luks [3, §1] to study nilpotent Lie algebras.

(3.4) **Definition.** \(t(N) \) is the dimension of a maximal torus in the derivation algebra \(\text{Der}_k N \).

Thus, if \(\text{Der}_k N \) is nilpotent, then \(t(N)=0 \).

4. **Results on \(S \).** These follow from Lemma (2.1) and the basic structure of algebraic Lie algebras.

(4.1) **Theorem.** Let the nonzero indecomposable nilpotent \(k \)-algebra \(N \) accept as nowhere trivial Wedderburn factor the split semisimple \(S=\bigoplus \alpha \text{M}(r_\alpha, k) \), with \(\alpha=1, \cdots, s \). Then

(i) if \(\text{char } k=0 \) and a Levi factor of \(\text{Der}_k N \) has no nonzero subalgebras \(s\mathfrak{l}(n, k) \), then \(S \) is a direct sum of copies of \(k \);

(ii) if \(\text{Der}_k N \) is solvable, then \(S \) is a direct sum of copies of \(k \);

(iii) \((\sum \alpha r_\alpha)-1 \leq \text{genus}(N) \leq t(N) \);

(iv) in particular, if \(\text{Der}_k N \) is nilpotent, then \(\text{genus}(N)=0 \), that is, \(S=k \).
5. An illustration. This family of algebras will provide counterexamples to the converses of certain assertions in (2.1) and (4.1). Let char $k \neq 2$ and, for each τ in k, let N_τ be the 3-dimensional k-algebra with basis x, y, z and multiplication $xy = z, yx = \tau z$, and all other products of basis elements zero. Note that $(N_\tau)^6 = (0)$, so that N_τ is associative, nilpotent, and indecomposable.

The following assertions about N_τ are easily verified.

(5.1) N_0 accepts $S = k e_1 \oplus k e_2 \oplus k e_3$ (cf. 3 by 3 upper triangular matrices). Genus$(N_0) = 2$. Also $t(N_0) = 2$.

(5.2) For $\tau \neq 0$, genus$(N_\tau) = 0$, but again $t(N_\tau) = 2$.

(5.3) All Der$_k N_\tau$ are solvable nonnilpotent with 2-dimensional maximal torus.

(5.4) The maximal tori in all Der$_k N_\tau$ are isomorphic, and all modules N_τ are equivalent.

(5.5) Moral. The structure of Der$_k N$ and its natural representation on N (as discussed so far) are not sufficient to decide genus(N). The conditions we give in §6 that a torus in Der$_k N$ be of the form $\delta(S)$ as in (1.2) must necessarily involve the associative product in N.

6. Peirce tori and direct sums of fields. We characterize in terms of Der$_k N$ the direct sums of fields accepted by N. Here "eigenvalues" and "weights" refer to the natural representation of Der$_k N$ on N.

(6.1) Definition. Let N be an indecomposable nilpotent k-algebra. The torus T in Der$_k N$ is a Peirce torus if either $T = (0)$ or T has a spanning set e_1, \ldots, e_m with $m \geq 2$ satisfying these four conditions:

(a) $e_1 + \cdots + e_m = 0$, but any $m-1$ of the e_i furnish a k-basis for T;
(b) the set of eigenvalues for each e_i is either $\{0, 1\}$, $\{0, -1\}$, or $\{0, 1, -1\}$;
(c) each nonzero weight of T is of the form λ_{ij}, defined by $\lambda_{ij}(e_i) = 1, \lambda_{ij}(e_j) = -1, \lambda_{ij}(e_k) = 0$ for h, i, j distinct;
(d) the 0-weightspace W_0 in N decomposes as k-algebra into a direct sum $\bigoplus_i W_i$ of two-sided (possibly zero) ideals, $i = 1, \cdots, m$, satisfying (here W_{ij} is the λ_{ij}-weightspace) for distinct h, i, j,

$$W_i W_j \subset W_{ij}, \quad W_i W_{hj} = (0), \quad W_{hj} W_i = (0).$$

A Peirce torus yields a standard Peirce decomposition $N = \bigoplus_{i,j} e_i N e_j$ with respect to orthogonal e_1, \ldots, e_m via the definitions $e_i N e_i = W_i, e_i N e_j = W_{ij}$ for distinct i, j.

(6.2) Theorem. The indecomposable nilpotent k-algebra N accepts $S = k e_1 \oplus \cdots \oplus k e_s$ as nowhere trivial Wedderburn factor if and only if Der$_k N$ contains a Peirce torus of dimension $s - 1$.

REFERENCES

DEPARTMENT OF MATHEMATICS, SAN DIEGO STATE UNIVERSITY, SAN DIEGO, CALIFORNIA 92115.