GLOBAL BIFURCATION THEOREMS
FOR NONCOMPACT OPERATORS

BY JOHN MACBAIN

Communicated by Michael Golomb, February 24, 1974

1. Introduction. The first general existence theorem for bifurcation points was obtained by Krasnoselski [1]. He considered the equation
\[u = \lambda L u + H(\lambda, u) \]
in a real Banach space \(B \) where \(L \) and \(H \) are compact, and \(H \) is \(o(||u||) \) uniformly on each bounded \(\lambda \) interval for small \(u \). In this situation he proved that if \(\lambda \) is a characteristic value of \(L \) having odd multiplicity, then \((\lambda, 0)\) is a bifurcation point in \(R \times B \). Much more recently, Rabinowitz [2] considered the same problem and, using a Leray-Schauder degree argument, obtained a two-fold alternative for the global behavior of these bifurcation branches.

This paper extends the results of Krasnoselski and Rabinowitz to a much larger class of operator equations. First to be considered is the equation
\[Lu = \lambda u + H(\lambda, u) \]
in a real Hilbert space \(H \), where \(H \) is as above and \(L \) is selfadjoint (bounded or unbounded). In this case, each isolated eigenvalue of \(L \) having odd multiplicity is a bifurcation point possessing a continuous branch. Moreover, an alternative theorem on the global behavior of these branches is obtained.

By use of similar arguments these results for selfadjoint operators are extended to a general class of linear operators in a real Banach space \(B \).

2. The selfadjoint operators. In this section all work is in a real Hilbert space \(H \), \(L \) is a selfadjoint operator taking \(H \) into \(H \), and \(H(\lambda, u) \) is a compact operator taking \(R \times H \) into \(H \) that is \(o(||u||) \) uniformly on each bounded \(\lambda \) interval for small \(u \).

Let \(E \) denote \(R \times H \) with the product topology. For \(V \subset E \), a subcontinuum of \(V \) is a subset of \(V \) which is closed and connected in \(E \). The trivial solutions of (1) are the points \((\lambda, 0)\), and all other solutions are called nontrivial. Let \(S \) denote all nontrivial solutions of (1), and let \(E_{\lambda_0} \) denote the maximal subcontinuum of \(S \cup (\lambda_0, 0) \) containing \((\lambda_0, 0)\).

Key words and phrases. Nonlinear operator equations, bifurcation.

Copyright © American Mathematical Society 1974

1005
For a subset A of R, H, or E, $Cl(A)$ denotes its closure in the respective space. For $A \subseteq E$, A_R denotes $\{\lambda | (\lambda, u) \in A \text{ for some } u\}$, and A_H denotes $\{u | (\lambda, u) \in A \text{ for some } \lambda\}$. By an isolated eigenvalue λ of L, we mean that λ is an eigenvalue of L and $\text{dist}(\lambda, \text{sp } L\setminus\lambda) > 0$.

The following lemma is stated without proof.

Lemma 1. Suppose λ_0 is an isolated eigenvalue of L having finite multiplicity. Assume \mathcal{C}_{λ_0} is bounded, $\text{Cl}(\mathcal{E}_{\lambda_0}) \cap \text{ess sp } L = \emptyset$, and $\mathcal{C}_{\lambda_0} \cap \{R \times \{0\}\} = (\lambda_0, 0)$. Then \mathcal{C}_{λ_0} is compact and there exists a bounded open set $\mathcal{O} \subseteq E$ such that $\mathcal{C}_{\lambda_0} \subseteq \mathcal{O}$, $\partial \mathcal{O} \cap H = \emptyset$, $\text{Cl}(\mathcal{O}_H) \cap \text{ess sp } L = \emptyset$, the only trivial solutions contained in \mathcal{O} are points $(\lambda, 0)$ where $|\lambda - \lambda_0| < \varepsilon$ for some $\varepsilon < \varepsilon_0 = \text{dist}(\lambda_0, \text{sp } L\setminus\lambda_0)$, and $\text{dist}(\partial \mathcal{O}, \{\text{sp } L \times \{0\}\}) \geq 2\varepsilon_1$ for some positive ε_1.

Remark. The theorem below will show that the hypotheses of the preceding lemma imply that λ_0 is an eigenvalue of even multiplicity.

Theorem 1. Let λ_0 be an isolated eigenvalue of L having odd multiplicity. Then

(i) \mathcal{C}_{λ_0} is unbounded, or

(ii) \mathcal{C}_{λ_0} is bounded and $\text{Cl}(\mathcal{E}_{\lambda_0}) \cap \text{ess sp } L \neq \emptyset$, or

(iii) \mathcal{C}_{λ_0} is compact, $\text{Cl}(\mathcal{E}_{\lambda_0}) \cap \text{ess sp } L = \emptyset$, and \mathcal{C}_{λ_0} contains trivial solutions other than $(\lambda_0, 0)$.

Proof. Let us define $\Phi(\lambda, u) = Lu - \lambda u - H(\lambda, u)$. In general, degree theory cannot be applied to such an operator. Under the hypothesis on L we will show how Φ can be replaced by a compact perturbation of the identity, thus allowing the use of degree theory.

Assume that none of (i), (ii), and (iii) occurs. Then by Lemma 1 we find a bounded open set $\mathcal{O}, \varepsilon > 0$, and $\varepsilon_1 > 0$, such that $\mathcal{C}_{\lambda_0} \subseteq \mathcal{O}$, $\text{Cl}(\mathcal{O}_H) \cap \text{ess sp } L = \emptyset$, $\partial \mathcal{O} \cap H = \emptyset$, $\text{dist}(\partial \mathcal{O}, \{\text{sp } L \times \{0\}\}) \geq 2\varepsilon_1$, and the only trivial solutions to (1) in \mathcal{O} are points $(\lambda, 0)$ satisfying $|\lambda - \lambda_0| < \varepsilon < \varepsilon_0$, where $\varepsilon_0 = \text{dist}(\lambda_0, \text{sp } L\setminus\lambda_0)$.

Select a neighborhood N of $\text{ess sp } L$ which contains $\text{Cl}(\mathcal{O}_H)$ in its exterior, and let $\mu_0 \notin \text{Cl}(\mathcal{O}_H)$ be in the resolvent set. Let $H' \supseteq H''$ denote the maximal closed subspace for which $H'' \subseteq H'$ and $\text{sp } L|H'' = \text{sp } L \cap N$, and let P be the projector onto H''. Define the linear operator L_0 by

$$L_0 = (L - \mu_0 I)(I - P).$$

L_0 is clearly compact. Furthermore, $\lambda \notin N$ is an eigenvalue of L having multiplicity m if and only if $\lambda - \mu_0$ is an eigenvalue of L_0 having multiplicity m. For $\lambda \notin \{\mu_0\} \cup N$ we define

$$G_\lambda = (\lambda - \mu_0)^{-1}[L_0 + (I - P)(-H(\lambda, u))] + (\lambda - L)^{-1}P(-H(\lambda, u)).$$
From the definition of P it follows that (1) is equivalent to

$$u = G\lambda u$$

for λ in a neighborhood of $\text{Cl}((\mathcal{C}_R))$. The linear part of $G\lambda$ is compact and the linear part of G_{λ_0} has the eigenvalue 1 with multiplicity m_0 if and only if L has the eigenvalue λ_0 with multiplicity m_0. The nonlinear part of $G\lambda$ is also compact and in norm is $o(\|u\|)$ for small u.

(2) is the form necessary for the use of Leray-Schauder degree theory. Applying this theory as Rabinowitz [2] did shows that one of (i), (ii), or (iii) must occur.

Remark. If the multiplicity of λ_0 is odd, Theorem 1 guarantees that A_0 is a bifurcation point with a continuous branch \mathcal{C}_{λ_0}.

Corollary 1. Let λ_0 be an isolated eigenvalue of L of finite multiplicity which is a bifurcation point with continuous branch λ_0. Then

(i)' \mathcal{C}_{λ_0} is unbounded, or

(ii)' \mathcal{C}_{λ_0} is bounded and $\text{Cl}((\mathcal{C}_{\lambda_0})_R) \cap \text{ess sp } L \neq \emptyset$, or

(iii)' \mathcal{C}_{λ_0} is compact, $\text{Cl}((\mathcal{C}_{\lambda_0})_R) \cap \text{sp } L = \{\lambda_0, \lambda_1, \ldots, \lambda_n\}$ and the sum of the multiplicities of the eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_n$ is even.

We now consider

$$Lu = \lambda Ku + H(\lambda, u),$$

where K is positive definite and bounded and L, H are as above.

Corollary 2. Let R be the positive square root of K. Let λ_0 be an isolated eigenvalue of $R^{-1}LR^{-1}$ of finite multiplicity which is a bifurcation point of (3) with a continuous branch \mathcal{D}_{λ_0}. Then

(i) \mathcal{D}_{λ_0} is unbounded, or

(ii) \mathcal{D}_{λ_0} is bounded and $\text{Cl}((\mathcal{D}_{\lambda_0})_R) \cap \text{ess sp }(R^{-1}LR^{-1}) \neq \emptyset$, or

(iii) \mathcal{D}_{λ_0} is compact, $\text{Cl}((\mathcal{D}_{\lambda_0})_R) \cap \text{sp } (R^{-1}LR^{-1}) = \{\lambda_0, \lambda_1, \ldots, \lambda_n\}$ and the sum of the multiplicities of the eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_n$ (of $R^{-1}LR^{-1}$) is even.

If the multiplicity of λ_0 is odd, then $(\lambda_0, 0)$ is a bifurcation point possessing a continuous branch.

3. **General operators.** We now generalize by considering a real Banach space \mathcal{B} and linear operators $T: \mathcal{B} \rightarrow \mathcal{B}$. The equation being studied is

$$Tu = \lambda u + H(\lambda, u)$$

with H as before.
THEOREM 2. Suppose λ_0 is an isolated eigenvalue of T of odd multiplicity and

(a) to every closed interval $\sigma \subset R \setminus \text{ess sp } T$ containing λ_0 there is a compact projector Q_σ that commutes with T, and λ_0 is an isolated eigenvalue of $T|Q_\sigma B$ of odd multiplicity,

(b) the restriction of $T - \lambda I$ to $(I - Q_\sigma)B$ is invertible for $\lambda \in \sigma$.

Then $(\lambda_0, 0)$ is a bifurcation point possessing a continuous branch C_{λ_0} such that

(i) C_{λ_0} is unbounded, or

(ii) C_{λ_0} is bounded and $\text{Cl}(\langle C_{\lambda_0} \rangle_R) \cap \text{ess sp } T \neq \emptyset$, or

(iii) C_{λ_0} is compact, $\langle C_{\lambda_0} \rangle_R \cap \text{sp } T = \{\lambda_0, \lambda_1, \ldots, \lambda_n\}$ and the sum of the multiplicities of the eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_n$ is even.

PROOF. The proof is similar to that of Theorem 1.

COROLLARY 3. Suppose λ_0 is an isolated eigenvalue of T of odd multiplicity and for every closed interval $\sigma \subset R \setminus \text{ess sp } T$ containing λ_0, T can be uniformly approximated by operators T_ε which are of the type treated in Theorem 2 and such that $\text{sp } T_\varepsilon \cap \sigma = \text{sp } T \cap \sigma$ up to multiplicity of eigenvalues. Then the results of Theorem 2 hold for T_ε and C_{λ_0}.

Our work necessitates the use of a complexification of B which is denoted by $\hat{B} = B \times B$. The general element of \hat{B} is

$$(x, y) = x + iy \quad \text{and} \quad \|(x, y)\|_{\hat{B}} = (\|x\|^2 + \|y\|^2)^{1/2},$$

where $\| \cdot \|$ is the norm in B. For any linear $T: B \to B$, $\hat{T}: \hat{B} \to \hat{B}$ is its unique linear extension to \hat{B}.

THEOREM 3. Let T be a bounded linear operator and σ be a compact subset of $R \setminus \text{ess sp } \hat{T}$. Then there is a bounded projector Q_σ that commutes with T such that the restriction of $T - \lambda I$ to $(I - Q_\sigma)B$ is invertible for $\lambda \in \sigma$ and $Q_\sigma B$ is the span of the principal manifolds belonging to eigenvalues of T in σ.

PROOF. The first step is to go to the complexifications \hat{T} and \hat{B}. A decomposition theorem [3] is applicable to this complex case. From this complex decomposition, we can derive suitable real projections from \hat{B} into B and their corresponding subspaces in B.

REMARK. It follows from this theorem that Theorem 2 holds for all bounded linear operators T on B for which $R \cap \text{ess sp } \hat{T} = \text{ess sp } T$. In particular this is true if T is compact, or if B is a Hilbert space and T is selfadjoint.
REFERENCES

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907

Current address: Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, Ohio 45433