Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A general theory of identities of the Rogers-Ramanujan type


Author: George E. Andrews
Journal: Bull. Amer. Math. Soc. 80 (1974), 1033-1052
MSC (1970): Primary 10A45, 33A30; Secondary 05A15, 05A19
DOI: https://doi.org/10.1090/S0002-9904-1974-13616-5
MathSciNet review: 0387178
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. C. R. Adams, Linear q-difference equations, Bull. Amer. Math. Soc. 37 (1931), 361-400.
  • 2. H. L. Alder, Generalizations of the Rogers-Ramanujan identities, Pacific J. Math. 4 (1954), 161-168. MR 15, 856. MR 61628
  • 3. G. E. Andrews, On q-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math. Oxford Ser. (2) 19 (1968), 433-447. MR 38 #6112. MR 237831
  • 4. G. E. Andrews, A new generalization of Schur's second partition theorem, Acta Arith. 14 (1967/68), 429-434. MR 37 #4042. MR 228462
  • 5. G. E. Andrews, A general theorem on partitions with difference conditions, Amer. J. Math. 91 (1969), 18-24. MR 39 #4109. MR 242782
  • 6. G. E. Andrews, A generalization of the classical partition theorems, Trans. Amer. Math. Soc. 145 (1969), 205-221. MR 40 #4226. MR 250995
  • 7. G. E. Andrews, Number theory, Saunders, Philadelphia, Pa., 1971. MR 46 #8943. MR 309838
  • 8. G. E. Andrews, Partition identities, Advances in Math. 9 (1972), 10-51. MR 46 #5232. MR 306105
  • 9. G. E. Andrews, A general theory of identities of the Rogers-Ramanujan type, Amer. Math. Soc. Audio Recording No. 75 and Supplementary Manual, Providence, R.I., 1972.
  • 10. G. E. Andrews, Summations and transformations of basic Appell series, J. London Math. Soc. (2) 4 (1972), 618-622. MR 46 #5682. MR 306559
  • 11. G. E. Andrews, Sieves for theorems of Euler, Rogers, and Ramanujan, Proc. Western Michigan Conference on Arithmetic Functions, Lecture Notes in Math., no. 251, Springer-Verlag, New York and Berlin, 1972. MR 360457
  • 12. G. E. Andrews, Sieves in the theory of partitions, Amer. J. Math. 94 (1972), 1214-1230. MR 319883
  • 13. G. E. Andrews, On the Alder polynomials and a new generalization of the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. (to appear). MR 364083
  • 14. G. E. Andrews, On the general Rogers-Ramanujan theorem (to appear). MR 364082
  • 15. G. E. Andrews, On Rogers-Ramanujan type identities related to the modulus11, Proc. London Math. Soc. (to appear). MR 677447
  • 16. W. N. Bailey, Generalized hypergeometric series, Cambridge Math. Tract, no. 32, Cambridge Univ. Press, Cambridge, 1935.
  • 17. W. N. Bailey, Some identities in combinatory analysis, Proc. London Math. Soc. (2) 49 (1947), 421-435. MR 9, 263. MR 22816
  • 18. W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1948), 1-10. MR 9, 585. MR 25025
  • 19. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. vol. 25, Amer. Math. Soc. Providence, R.I., 1948, revised 1967. MR 227053
  • 20. G. D. Birkhoff, The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Amer. Acad. Arts and Sci. 49 (1913), 521-568.
  • 21. R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math. 34 (1912), 147-168. MR 1506145
  • 22. W. G. Connor, Partition theorems related to some identities of Rogers and Watson, Trans. Amer. Math. Soc. (to appear). MR 414480
  • 23. G. Frobenius, Über die Charaktere der symmetrischen Gruppe, Sitzber. Preuss. Akad. Berlin 1900, 516-534.
  • 24. B. Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741-748. MR 32 #1477. MR 184001
  • 25. W. Hahn, Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogen der Laplace-Transformation, Math. Nachr. 2 (1949), 340-379. MR 11, 720. MR 35344
  • 26. W. Hahn, Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen, Math. Nachr. 3 (1950), 257-294. MR 12, 711. MR 40557
  • 27. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, Oxford, 1960. MR 568909
  • 28. F. H. Jackson, On basic double hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942), 69-82. MR 4, 141. MR 7453
  • 29. D. E. Knuth, The art of computer programming. Vol. 3. Sorting and searching, Addison-Wesley, Reading, Mass., 1973. MR 378456
  • 30. F. J. Murray and K. S. Mller, Existence theorems for ordinary differential equations, New York Univ. Press, New York, 1954. MR 16, 358. MR 64934
  • 31. S. Ramanujan and L. J. Rogers, Proof of certain identities in combinatory analysis, Proc. Cambridge Philos. Soc. 19 (1919), 211-216.
  • 32. L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (2) 16 (1917), 315-336.
  • 33. F. Ryde, A contribution to the theory of linear homogeneous geometric difference equations (q-difference equations), Ph.D. Dissertation, Lund, 1921.
  • 34. I. J. Schur, Zur additiven Zahlentheorie, Sitzler. Akad. Wiss. Berlin Phys.-Math. Kl. 1926, 488-495.
  • 35. L. J. Slater, A newproof of Roger's transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460-475. MR 13, 227. MR 43235
  • 36. L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167. MR 14, 138. MR 49225
  • 37. L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 34 #1570. MR 201688

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 10A45, 33A30, 05A15, 05A19

Retrieve articles in all journals with MSC (1970): 10A45, 33A30, 05A15, 05A19


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13616-5

American Mathematical Society