The computation of surgery groups of odd torsion groups

Author:
Anthony Bak

Journal:
Bull. Amer. Math. Soc. **80** (1974), 1113-1116

MSC (1970):
Primary 57-02, 57AXX, 57D65, 18-02, 18F25, 10C05, 16A54, 16-02, 16A18, 16A26, 20C10, 20H99; Secondary 13D15

DOI:
https://doi.org/10.1090/S0002-9904-1974-13634-7

MathSciNet review:
0494156

Full-text PDF Free Access

References | Similar Articles | Additional Information

**1.**A. Bak,*K-theory of forms*, Ann. Math. Studies (to appear). MR**632404****2.**A. Bak,*Odd dimension surgery groups of odd torsion groups vanish*, Topology (to appear). MR**400263****3.**A. Bak,*The computation of even dimension surgery groups of odd torsion groups*(preprint). MR**507109****4.**A. Bak,*The involution on Whitehead torsion*(preprint). MR**451249****5.**A. Bak,*Solution to the congruence subgroup problem for λ-hermitian forms*(preprint).**6.**A. Bak,*Grothendieck groups of modules and hermitian forms over commutative orders*(preprint).**7.**A. Bak and W. Scharlau,*Grothendieck and Witt groups of orders and finite groups*, Invent, fac. 1, 1974. MR**340338****8.**H. Bass,*L*, Ann. of Math, (to appear).**9.**H. Bass,*Algebraic K-theory*, Benjamin, New York, 1968. MR 40 #2736. MR**249491****10.**J. Shaneson,*Hermitian K-theory in topology*, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973, pp. 1-40. MR**394704****11.**M. Siu,*Computation of unitary Whitehead group of cyclic groups*, Thesis, Columbia Univ., New York, 1971.**12.**C. T. C. Wall,*Some L groups of finite groups*, Bull. Amer. Math. Soc. 79 (1973), 526-529. MR**335605**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
57-02,
57AXX,
57D65,
18-02,
18F25,
10C05,
16A54,
16-02,
16A18,
16A26,
20C10,
20H99,
13D15

Retrieve articles in all journals with MSC (1970): 57-02, 57AXX, 57D65, 18-02, 18F25, 10C05, 16A54, 16-02, 16A18, 16A26, 20C10, 20H99, 13D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1974-13634-7