Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space


Author: Teck-Cheong Lim
Journal: Bull. Amer. Math. Soc. 80 (1974), 1123-1126
MSC (1970): Primary 46A05
DOI: https://doi.org/10.1090/S0002-9904-1974-13640-2
MathSciNet review: 0394333
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562. MR 341459
  • 2. F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part II, Amer. Math. Soc., Providence, R.I. (to appear). MR 405188
  • 3. M. M. Day, R. C James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059. MR 44 #4492. MR 287285
  • 4. M. Edelstein, The construction of an asymptotic center with a fixed point property, Bull. Amer. Math. Soc. 78 (1972), 206-208. MR 45 #1005. MR 291917
  • 5. M. Edelstein, Fixed point theorems in uniformly convex Banach spaces (to appear). MR 358451
  • 6. A. L. Garkavi, The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106; English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 111-132. MR 25 #429. MR 136969
  • 7. E. Lami Dozo, Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286-292. MR 46 #9816. MR 310718
  • 8. T. C. Lim, A fixed point theorem for families of nonexpansive mappings, Pacific J. Math. (to appear). MR 365250
  • 9. T. C. Lim, Characterizations of normal structure, Proc. Amer. Math. Soc. 43 (1974), 313-319. MR 361728
  • 10. T. C. Lim, On asymptotic center and its applications to fixed point theory (submitted).
  • 11. J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640. MR 37 #3409. MR 227825
  • 12. S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. MR 40 #8035. MR 254828
  • 13. W. Sierpiński, Cardinal and ordinal numbers, 2nd rev. ed., Monografie Mat., vol. 34, PWN, Warsaw, 1965, p. 382 and p. 390. MR 33 #2549. MR 194339

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 46A05

Retrieve articles in all journals with MSC (1970): 46A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13640-2

American Mathematical Society