Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Manifolds with fundamental group a generalized free product. I


Author: Sylvain E. Cappell
Journal: Bull. Amer. Math. Soc. 80 (1974), 1193-1198
MSC (1970): Primary 57A35, 57B10, 57C35, 57D40, 57D65, 57D80; Secondary 57D20, 18F25
DOI: https://doi.org/10.1090/S0002-9904-1974-13673-6
MathSciNet review: 0356091
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [B1] W. Browder, Embedding 1-connected manifolds, Bull. Amer. Math. Soc. 72 (1966), 225-231; erratum, ibid. 72 (1966), 736. MR 32 #6467. MR 190940
  • [B2] W. Browder, Manifolds with π1 = Z, Bull. Amer. Math. Soc. 72 (1966), 238-244. MR 32 #8350.
  • [BL] W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153-160. MR 33 #3309. MR 195104
  • [C1] S. E. Cappell, A splitting theorem for manifolds and surgery groups, Bull. Amer. Math. Soc. 77 (1971), 281-286. MR 44 #2234. MR 285010
  • [C2] S. E. Cappell, Mayer-Vietoris sequences in Hermitian K-theory, Proc. Battelle K-theory Conference, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973, pp. 478-512. MR 358814
  • [C3] S. E. Cappell, A splitting theorem for manifolds (to appear). MR 438359
  • [C4] S. E. Cappell, Splitting obstructions for Hermitian forms and manifolds with Z2 ⊂ π1, Bull. Amer. Math. Soc. 79 (1973), 909-914.
  • [C5] S. E. Cappell, Connected sums of manifolds, Topology (to appear). MR 358793
  • [C6] S. E. Cappell, Unitary nilpotent groups and Hermitian K-theory. I, Bull. Amer. Math. Soc. 80 (1974), MR 358815
  • [C7] S. E. Cappell, Manifolds with fundamental group a generalized free product. II (to appear). MR 356091
  • [C8] S. E. Cappell, On tne homotopy invariance of higher signatures (to appear). MR 438349
  • [CS] S. E. Cappel and J. L. Shaneson, Four-dimensional surgery and applications, Comment. Math. Helv. 46 (1971), 500-528. MR 46 #905. MR 301750
  • [FH] F. T. Farrell and W. C. Hsiang, Manifolds with π1 = G ×α T, Amer. J. Math. (to appear).
  • [L] R. Lee, Splitting a manifold into two parts, Mimeographed notes, Institute for Advanced Study. Princeton, N. J., 1969.
  • [S1] J. L. Shaneson, Wall's surgery obstruction groups for G × Z, Ann. of Math. (2) 90 (1969), 296-334. MR 39 #7614. MR 246310
  • [S2] D. Sullivan, Geometric topology seminar notes, Mimeographed notes, Princeton Univ., 1967.
  • [W1] F. Waldhausen, Whitehead groups of generalized free products (Mimeographed preprint). MR 370576
  • [W2] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 431216
  • [M] A. S. Miščenko, Homotopy invariants of non-simply connected manifolds, II. Simple homotopy type, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 655-666 = Math. USSR Izv. 5 (1971), 668-679. MR 45 #2734. MR 293657

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57A35, 57B10, 57C35, 57D40, 57D65, 57D80, 57D20, 18F25

Retrieve articles in all journals with MSC (1970): 57A35, 57B10, 57C35, 57D40, 57D65, 57D80, 57D20, 18F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13673-6

American Mathematical Society