Manifolds with fundamental group a generalized free product. I
Author:
Sylvain E. Cappell
Journal:
Bull. Amer. Math. Soc. 80 (1974), 11931198
MSC (1970):
Primary 57A35, 57B10, 57C35, 57D40, 57D65, 57D80; Secondary 57D20, 18F25
DOI:
https://doi.org/10.1090/S000299041974136736
MathSciNet review:
0356091
Fulltext PDF Free Access
References  Similar Articles  Additional Information

[B1] W. Browder, Embedding 1connected manifolds, Bull. Amer. Math. Soc. 72 (1966), 225231; erratum, ibid. 72 (1966), 736. MR 32 #6467. MR 190940

[B2] W. Browder, Manifolds with π_{1} = Z, Bull. Amer. Math. Soc. 72 (1966), 238244. MR 32 #8350.

[BL] W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153160. MR 33 #3309. MR 195104

[C1] S. E. Cappell, A splitting theorem for manifolds and surgery groups, Bull. Amer. Math. Soc. 77 (1971), 281286. MR 44 #2234. MR 285010

[C2] S. E. Cappell, MayerVietoris sequences in Hermitian Ktheory, Proc. Battelle Ktheory Conference, Lecture Notes in Math., vol. 343, SpringerVerlag, Berlin and New York, 1973, pp. 478512. MR 358814

[C3] S. E. Cappell, A splitting theorem for manifolds (to appear). MR 438359

[C4] S. E. Cappell, Splitting obstructions for Hermitian forms and manifolds with Z_{2} ⊂ π_{1}, Bull. Amer. Math. Soc. 79 (1973), 909914.

[C5] S. E. Cappell, Connected sums of manifolds, Topology (to appear). MR 358793

[C6] S. E. Cappell, Unitary nilpotent groups and Hermitian Ktheory. I, Bull. Amer. Math. Soc. 80 (1974), MR 358815

[C7] S. E. Cappell, Manifolds with fundamental group a generalized free product. II (to appear). MR 356091

[C8] S. E. Cappell, On tne homotopy invariance of higher signatures (to appear). MR 438349

[CS] S. E. Cappel and J. L. Shaneson, Fourdimensional surgery and applications, Comment. Math. Helv. 46 (1971), 500528. MR 46 #905. MR 301750

[FH] F. T. Farrell and W. C. Hsiang, Manifolds with π_{1} = G ×_{α} T, Amer. J. Math. (to appear).

[L] R. Lee, Splitting a manifold into two parts, Mimeographed notes, Institute for Advanced Study. Princeton, N. J., 1969.

[S1] J. L. Shaneson, Wall's surgery obstruction groups for G × Z, Ann. of Math. (2) 90 (1969), 296334. MR 39 #7614. MR 246310

[S2] D. Sullivan, Geometric topology seminar notes, Mimeographed notes, Princeton Univ., 1967.

[W1] F. Waldhausen, Whitehead groups of generalized free products (Mimeographed preprint). MR 370576

[W2] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 431216

[M] A. S. Miščenko, Homotopy invariants of nonsimply connected manifolds, II. Simple homotopy type, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 655666 = Math. USSR Izv. 5 (1971), 668679. MR 45 #2734. MR 293657
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57A35, 57B10, 57C35, 57D40, 57D65, 57D80, 57D20, 18F25
Retrieve articles in all journals with MSC (1970): 57A35, 57B10, 57C35, 57D40, 57D65, 57D80, 57D20, 18F25
Additional Information
DOI:
https://doi.org/10.1090/S000299041974136736