Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The pressure is independent of the boundary conditions for $P\left( \phi \right)_2$ field theories


Authors: F. Guerra, L. Rosen and B. Simon
Journal: Bull. Amer. Math. Soc. 80 (1974), 1205-1209
MSC (1970): Primary 81A18, 60J25; Secondary 80A05, 46C10
DOI: https://doi.org/10.1090/S0002-9904-1974-13680-3
MathSciNet review: 0356774
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. E. Fisher and J. L. Lebowitz, Asymptotic free energy of a system with periodic boundary conditions, Comm. Math. Phys. 19 (1970), 251-272. MR 43 #4405. MR 278675
  • 2. J. Ginibre, Some applications of functional integration in statistical mechanics, Statistical Mechanics and Quantum Field Theory, Les Houches 1970 (C. DeWitt and R. Stora, editors), Gordon and Breach, New York, 1971.
  • 3. J. Glimm and A. Jaffe, Quantum field models Statistical Mechanics and Quantum Field Theory, Les Houches, 1970 (C. DeWitt and R. Stora, editors), Gordon and Breach, New York, 1971.
  • 4. F. Guerra, Uniqueness of the vacuum energy density and Van Hove phenomenon in the infinite volume limit for two dimensional self-coupled Bose fields, Phys. Rev. Lett. 28 (1972), 1213.
  • 5. F. Guerra, L. Rosen and B. Simon, Nelson's symmetry and the infinite volume behavior of the vacuum in P(ø)2, Comm. Math. Phys. 27 (1972), 10-22. MR 46 #10334. MR 311242
  • 6. F. Guerra, L. Rosen and B. Simon, The P(ø)2 Euclidean quantum field theory as classical statistical mechanics, Ann. of Math. (to appear).
  • 7. F. Guerra, L. Rosen and B. Simon, Boundary conditions in the P(ø)2 Euclidean quantum field theory (in preparation).
  • 8. F. Guerra, L. Rosen and B. Simon, Correlation inequalities and the mass gap in P(ø)2. III. Mass gap for a class of strongly coupled theories (in preparation).
  • 9. J. L. Lebowitz and O. Penrose, Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems, Comm. Math. Phys. 11 (1968/69), 99-124. MR 39 #3781. MR 242450
  • 10. J. L. Lebowitz and O. Penrose, Decay of correlations, Phys. Rev. Lett. 31 (1973), 749-752.
  • 11. E. Nelson, Quantum fields and Markoff fields, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc. Providence, R. I., 1973. MR 337206
  • 12. D. Robinson, The thermodynamic pressure in quantum statistical mechanics, Springer-Verlag, Berlin, 1971. MR 432122
  • 13. I. Segal, Nonlinear functions of weak processes. I, II, J. Functional Analysis 4 (1969), 404-456; ibid. 6 (1970), 29-75. MR 40 #2309; 41 #7974. MR 249061
  • 14. B. Simon, Correlation inequalities and the mass gap in P(ø)2. II. Uniqueness of the vacuum for a class of strongly coupled theories, Ann. of Math. (to appear). MR 373511
  • 15. B. Simon, The P4)2 Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, N. J., 1974. MR 489552
  • 16. B. Simon and R. Griffiths, The4)2 field theory as a classical Ising model, Comm. Math. Phys. 33 (1973), 145-164. MR 428998
  • 17. T. Spencer, The mass gap for the P(ø)2 quantum field model with a strong external field, Comm. Math. Phys. (to appear). MR 363294
  • 18. G. Velo and A. S. Wightman (editors), Constructive quantum field theory, Lectures Notes in Physics, vol. 25, Springer-Verlag, Berlin, 1973. MR 395513

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 81A18, 60J25, 80A05, 46C10

Retrieve articles in all journals with MSC (1970): 81A18, 60J25, 80A05, 46C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13680-3

American Mathematical Society