A COMPLETE LOCAL FACTORIAL RING OF
DIMENSION 4 WHICH IS NOT COHEN-MACULAY

BY ROBERT M. FOSSUM AND PHILLIP A. GRIFFITH

Communicated by Hyman Bass, July 15, 1974

Samuel [7] stated that he knew of no factorial noetherian ring which was not Cohen-Macaulay. Murthy [6] showed that a geometric factorial ring which is Cohen-Macaulay is Gorenstein. Subsequently, Bertin [1] constructed an example of a factorial ring which was not Cohen-Macaulay. Hochster and Roberts [5] noticed that such examples abound and were found by Serre [9]. On the other hand, Raynaud, Boutot, and Hartshorne and Ogus [3] have shown that a complete local ring which is factorial, of dimension at most 4, and with \(C \) as residue class field is Cohen-Macaulay.

This note is to announce that the completion of Bertin’s example (which is characteristic 2) is factorial. This defeats a conjecture suggested by Example 5.9 of Hochster [4] which states: If \(A \) is a complete noetherian domain, then some symbolic power of a prime ideal of height one is a maximal Cohen-Macaulay module.

Let \(k \) be a perfect field of characteristic \(p \) with \(p \neq 0 \). Let \(N \) operate on \(k^4 \) by \(N(e_i) = e_{i+1} \) for \(1 \leq i < 4 \) and with \(N(e_4) = 0 \). Then \(I + N \) is an automorphism of \(k^4 \) of order \(p \) if \(p \geq 5 \) and of order 4 if \(p = 2 \). Let \(B = k[X_1, X_2, X_3, X_4] \), which we consider to be the symmetric algebra on \(k^4 \). Let \(G \) denote the group of automorphisms of \(B \) induced by \(I + N \). It follows from Samuel [8] that the ring of invariants \(A = B^G \) is factorial. If \(p = 2 \), then Bertin [1] has shown that \(A \) is not Cohen-Macaulay. Using a result in Serre [9], Hochster and Roberts [5] show that \(A \) is not Cohen-Macaulay if \(p \geq 5 \). Let \(S = B_m \) and let \(R = S^G \), where \(m = (X_1, X_2, X_3, X_4) \). It follows that \(R = A_n \) with \(n = m \cap A \). The different \(D(S/R) = S \), and therefore the cohomology group \(H^1(G, G_m(S)) = 0 \). Let \(\hat{S} \) denote the \(m \)-adic completion of \(B \). The first result is almost obvious.
PROPOSITION 1. The n-adic completion of \(R \) is the ring of \(G \)-invariants of \(\hat{S} \). That is \(\hat{R} = \hat{S}^G \).

This yields the following corollary.

COROLLARY 2. The ring \(\hat{R} \) is not Cohen-Macaulay.

Let \(U_n = 1 + m^n S \) and \(\hat{U}_n = 1 + m^n \hat{S} \). The \(U_n \) are subgroups of \(G_m(S) \), and the following sequences are exact as \(G \)-modules:

\[
1 \to U_1 \to G_m(S) \to k^* \to 1,
\]

\[
1 \to U_{n+1} \to U_n \to m^n/m^{n+1} \to 0
\]

(and similarly with hats everywhere). Since \(G \) is cyclic, the cohomology of \(G \) is periodic of period 2 (cf. Cartan and Eilenberg [2]). We will study the exact sequence

\[
\cdots \to H^0(G, m^n/m^{n+1}) \to H^1(G, U_{n+1}) \to H^1(G, U_n) \to H^2(G, U_{n+1}) \to H^2(G, m^n/m^{n+1}) \to \cdots
\]

and the corresponding one with hats everywhere. Note that the \(G \)-module \(m^n/m^{n+1} \) is the \(n \)th symmetric power of \(m/m^2 \) as a \(G \)-module.

PROPOSITION 3. The connecting homomorphisms \(\hat{H}^0(G, m^n/m^{n+1}) \to H^1(G, U_{n+1}) \) are zero for all \(n \). Therefore the groups \(H^1(G, U_n) \) are zero and the sequence

\[
0 \to H^1(G, \hat{U}_{n+1}) \to H^1(G, \hat{U}_n) \to \cdots
\]

\[
\to H^2(G, \hat{U}_n) \to H^2(G, m^n/m^{n+1}) \to 0
\]

is exact.

REMARK. The contragredient representation of \(G \) on the \(k \)-duals of \(m^n/m^{n+1} \) induces isomorphisms of \(k \)-vector spaces:

\[
H^1(G, m^n/m^{n+1}) = H^2(G, (m^n/m^{n+1})^\vee).
\]

To show that \(\hat{R} \) is factorial, it is sufficient, therefore, to show that the homomorphisms \(H^1(G, \hat{U}_n) \to H^1(G, m^n/m^{n+1}) \) are zero for all \(n \). In characteristic \(p = 2 \), this is accomplished by directly calculating the groups \(H^1(G, m^n/m^{n+1}) \) and then showing that the connecting homomorphisms to \(H^2(G, U_{n+1}) \) are injections. Similar arguments should suffice in characteristic \(p \geq 5 \).
PROPOSITION 4. Suppose \(\text{char } k = 2 \). If \(n \) is odd, then \(H^1(G, m^n/m^{n+1}) = 0 \). If \(n \) is even, then \(\dim_k H^1(G, m^n/m^{n+1}) = \lceil n/4 \rceil + 1 \). If \(n = 4k \) and \(x = X_1(X_1 + X_2) \) (which is just \(X_1 \cdot (I + N)^2(X_1) \)), then a basis for \(H^1(G, m^n/m^{n+1}) \) is given by the classes of \(x^{2k}, x^{2k-1}a(x), \ldots, x^ka(x)^k \). A basis for \(H^2(G, m^n/m^{n+1}) \) is given by the classes of \((x + a(x))^{2k}, x^{2k-1}a(x) + xa(x)^{2k-1}, \ldots, x^ka(x)^k \), where \(a(x) = (I + N)x \) (and similarly for \(n = 4k + 2 \)).

The results announced here, as well as similar ones for \(\mathbb{Z}/p\mathbb{Z} \) acting on \(k[[X_0, \ldots, X_{p-1}]] \), will appear elsewhere.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801