Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Commutative subalgebra of $L^1 \left(G \right)$ associated with a subelliptic operator on a Lie group $G$


Author: A. Hulanicki
Journal: Bull. Amer. Math. Soc. 81 (1975), 121-124
MSC (1970): Primary 22E25, 43A70
DOI: https://doi.org/10.1090/S0002-9904-1975-13664-0
MathSciNet review: 0358229
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376. MR #47 3816. MR 315267
  • 2. G. B. Folland and E. M. Stein, Parametrics and estimates for the complex on strongly pseudoconvex boundaries, Bull. Amer. Math. Soc 80 (1974), 253-258. MR 344699
  • 3. L. Gårding, Vecteurs analytiques dan les représentations des groups de Lie, Bull. Soc. Math. France 88 (1960), 73-93. MR 22 #9870. MR 119104
  • 4. A. Hulanicki, Subalgebra of L1 (G) associated with laplacian on a Lie group, Colloq. Math, (to appear). MR 372536
  • 5. J. W. Jenkins, Growth of connected locally compact groups, J. Functional Analysis 12 (1973), 113-127. MR 349895
  • 6. A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489-578. MR 460543
  • 7. J. J. Kohn, Pseudo-differential operators and non-elliptic problems, Pseudo-Differential Operators (C. I. M. E., Stresa, 1968), Edizioni Cremonese, Rome, 1969, pp. 157-165. MR 41 #3972. MR 259334
  • 8. J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. MR 31 #6041. MR 181815
  • 9. A. Korányi and S. Vági, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648. MR 463513
  • 10. E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572-615. MR 21 #5901. MR 107176
  • 11. E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1970. MR 40 #6176. MR 252961
  • 12. E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Proc. Internat. Congress Math. (Nice, 1970), vol. I, Gauthier-Villars, Paris, 1971, pp. 173-189. MR 578903

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 22E25, 43A70

Retrieve articles in all journals with MSC (1970): 22E25, 43A70


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1975-13664-0

American Mathematical Society