A COMPARATIVE STUDY OF THE ZEROS OF DIRICHLET L-FUNCTIONS

BY AKIO FUJII

Communicated by Paul Bateman, June 18, 1974

We give a comparative study of the zeros of Dirichlet L-functions. Details will appear later.

1. Let χ_1 and χ_2 be distinct primitive characters of the same modulus q, and let $L(s, \chi_i)$, for $i = 1, 2$, be the corresponding Dirichlet L-functions. It is quite natural to guess that $L(s, \chi_1)$ and $L(s, \chi_2)$ have no coincident zero. In other words even a single zero will determine a Dirichlet L-function, or more generally, a "zeta-function". To be more precise, we call ρ a coincident zero of $L(s, \chi_1)$ and $L(s, \chi_2)$ if $L(\rho, \chi_1) = L(\rho, \chi_2) = 0$ with the same multiplicities. And we call ρ a noncoincident zero if it is not coincident. Then we can show

THEOREM 1. Let χ_1 and χ_2 be distinct primitive characters of the same modulus. Then a positive proportion of the zeros of $L(s, \chi_1)$ and $L(s, \chi_2)$ are noncoincident.

Next, it is quite natural to guess that the distribution of the zeros of $L(s, \chi_1)$ and $L(s, \chi_2)$ are independent. To state our results, let $\gamma_n(\chi)$ be the ordinate of the nth zero of $L(s, \chi)$ such that $0 \leq \gamma_n(\chi) < \gamma_{n+1}(\chi)$. Further we define $\gamma_n(\chi_1) \leq \gamma_m(\chi_2)$ if $\gamma_n(\chi_1) < \gamma_m(\chi_2)$, and $\gamma_n(\chi_1) = \gamma_m(\chi_2) \leq \gamma_{n+1}(\chi_1) \leq \gamma_{m+1}(\chi_2) \leq \cdots$ if $\gamma_n(\chi_1) = \gamma_{n+1}(\chi_1) = \cdots = \gamma_m(\chi_2) = \gamma_{m+1}(\chi_2) = \cdots$. Then we get

THEOREM 2. Under the same hypothesis as above, for a positive proportion of $\gamma_n(\chi_1)$'s, there does not exist a $\gamma(\chi_2)$ for which $\gamma_n(\chi_1) < \gamma(\chi_2) < \gamma_{n+1}(\chi_1)$.

Further we define $\Delta_n(\chi_1, \chi_2)$ to be $n - m$ if $\gamma_m(\chi_1) \leq \gamma_n(\chi_2) \leq \gamma_{m+1}(\chi_2)$.
\(\gamma_{m+1}(x_1) \). Then we can show

Theorem 3. For any positive increasing function \(\Phi(n) \) which tends to \(\infty \) as \(n \) tends to \(\infty \), we have

\[
|\Delta_n(x_1, x_2)| > 2\pi (\log \log n)^{1/2}/\Phi(n)
\]

for almost all \(n \). In particular, \(\gamma_n(x_2) \) almost never satisfies \(\gamma_n(x_1) \leq \gamma_{n+1}(x_1) \).

Theorems 1 and 2 come from a mean value theorem about

\[
\int_0^T (S(t + h, x_1) - S(t, x_1) - (S(t + h, x_2) - S(t, x_2))^i dt,
\]

where \(S(t, x) = \pi^{-1} \arg L(\frac{1}{2} + it, \chi) \) as before (cf. [1]). Theorem 3 comes from a mean value theorem about \(\int_0^T (S(t, x_1) - S(t, x_2))^j dt \). If we use mean value theorems about

\[
\sum' \sum' (S(t + h, x_1) - S(t, x_1) - (S(t + h, x_2) - S(t, x_2))^j
\]

and

\[
\sum' \sum' (S(t, x_1) - S(t, x_2))^j,
\]

where in the summation \(\chi_i \) runs over all nonprincipal characters of modulus \(q \) for each \(i = 1, 2 \), then we get \(q \)-analogues of our theorems.

2. As an application of our methods we can get some results about a problem of Knapowski-Turán. Let \(q \) be a given fixed positive integer. Assume that \((b, q) = (d, q) = 1 \) and \(b \neq d \) (mod \(q \)). Let \(\chi \) be a character of modulus \(q \). We write \(g(\chi) = (\overline{\chi(b)} - \overline{\chi(d)})/\varphi(q) \), and \(\mu(\rho) = \mu_{b,d}(\rho) = \sum_x g(\chi)m_x(\rho) \), where \(\chi \) runs over all characters of modulus \(q \) and \(m_x(\rho) \) is the multiplicity of \(\rho \) as a zero of the Dirichlet L-functions \(L(s, \chi) \).

Knapowski and Turán proposed the following problem in their study of prime numbers:

Estimate \(f(T) = \sum_{0 < \text{Im} \rho < T, \mu(\rho) \neq 0} 1 \) (cf. [3]). Concerning this problem, Kátai (unpublished) and Grosswald [2] proved independently the existence of infinitely many \(\rho \)'s with \(\mu(\rho) \neq 0 \). Later Turán obtained the following results (cf. [6]).

1. For \(T > \psi(q) \) we have the inequality \(f(T) > c_1 \exp((\log T)^{1/5}) \).
(2) Under the assumption of the generalized Riemann hypothesis we have \(f(T) > C_2 T^{1/2} \) for \(T > \psi(q) \), where the \(C_i \) are numerical constants and \(\psi(q) \) is an explicit function of \(q \). Recently Motohashi [4] obtained the following results.

1. For \(T > \psi(q) \) we have \(f(T) > T^{1/10} (\log T)^{-3} \).
2. For any sufficiently large \(T \) there exists at least one \(q \) with \(\frac{1}{2} T^{1/2} (\log T)^{51} q T^{1/2} (\log T)^{51} \) such that \(f(T) > T^{3/28} (\log T)^{-45} \).

Now we can show

THEOREM 4. For \(T > \psi(q) \) we have \(f(T) > AT \log T \), where \(\psi(q) \) is some explicit function of \(q \) and the positive constant \(A \) may depend on \(q \).

In fact, we can take \(\psi(q) = \exp(\exp(C_1 q)) \) and \(A = \exp(-C_2 q) \) with suitable positive absolute constants \(C_1 \) and \(C_2 \).

We prove this from a mean value theorem concerning

\[
\int_0^T \left| \sum_{\chi} g(\chi) S(t + h, \chi^*) - S(t, \chi^*) \right| dt,
\]

where \(\chi^* \) is the primitive character attached to \(\chi \).

REFERENCES

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: Department of Mathematics, Rikkyo University, Tokyo, Japan